题目内容
已知数列{an}是首项为a1=| 1 |
| 4 |
| 1 |
| 4 |
| 1 |
| 4 |
(1)求证:{bn}是等差数列;
(2)求数列{cn}的前n项和Sn.
分析:(1)由题意知,bn+1-bn=3log
an+1-3log
an=3log
=3log
q=3,所以数列{bn}是首项b1=1,公差d=3的等差数列.
(2)由题设条件知,Sn=1×
+4×(
)2+7×(
)3++(3n-5)×(
)n-1+(3n-2)×(
)n,运用错位相减法可求出数列{cn}的前n项和Sn.
| 1 |
| 4 |
| 1 |
| 4 |
| 1 |
| 4 |
| an+1 |
| an |
| 1 |
| 4 |
(2)由题设条件知,Sn=1×
| 1 |
| 4 |
| 1 |
| 4 |
| 1 |
| 4 |
| 1 |
| 4 |
| 1 |
| 4 |
解答:解:(1)由题意知,an=(
)n(n∈N*)
∵bn=3log
an-2,b1=3log
a1-2=1
∴bn+1-bn=3log
an+1-3log
an=3log
=3log
q=3
∴数列{bn}是首项b1=1,公差d=3的等差数列(7分)
(2)由(1)知,an=(
)n,bn=3n-2(n∈N*)
∴cn=(3n-2)×(
)n,(n∈N*)
∴Sn=1×
+4×(
)2+7×(
)3++(3n-5)×(
)n-1+(3n-2)×(
)n,
于是
Sn=1×(
)2+4×(
)3+7×(
)4++(3n-5)×(
)n+(3n-2)×(
)n+1
两式相减得
Sn=
+3[(
)2+(
)3++(
)n]-(3n-2)×(
)n+1=
-(3n+2)×(
)n+1.
∴Sn=
-
×(
)n+1(n∈N*)(14分)
| 1 |
| 4 |
∵bn=3log
| 1 |
| 4 |
| 1 |
| 4 |
∴bn+1-bn=3log
| 1 |
| 4 |
| 1 |
| 4 |
| 1 |
| 4 |
| an+1 |
| an |
| 1 |
| 4 |
∴数列{bn}是首项b1=1,公差d=3的等差数列(7分)
(2)由(1)知,an=(
| 1 |
| 4 |
∴cn=(3n-2)×(
| 1 |
| 4 |
∴Sn=1×
| 1 |
| 4 |
| 1 |
| 4 |
| 1 |
| 4 |
| 1 |
| 4 |
| 1 |
| 4 |
于是
| 1 |
| 4 |
| 1 |
| 4 |
| 1 |
| 4 |
| 1 |
| 4 |
| 1 |
| 4 |
| 1 |
| 4 |
两式相减得
| 3 |
| 4 |
| 1 |
| 4 |
| 1 |
| 4 |
| 1 |
| 4 |
| 1 |
| 4 |
| 1 |
| 4 |
| 1 |
| 2 |
| 1 |
| 4 |
∴Sn=
| 2 |
| 3 |
| 12n+8 |
| 3 |
| 1 |
| 4 |
点评:本题考查数列的性质和应用,解题时要认真审题,注意错位相减法的应用,仔细解答.
练习册系列答案
相关题目