题目内容
已知函数f(x)=
,若x0是y=f(x)的零点,且0<t<x0,则f(t)
- A.恒小于0
- B.恒大于0
- C.等于0
- D.不大于0
B
分析:当x≤0时,f(x)=0无解.当x>0时,由题意可得f(x)=0的解为x=x0.由于函数f(x)在(0,+∞)上是减函数,f(x0)=0,故当0<t<x0时,f(t)恒大于零.
解答:当x≤0时,f(x)=2x-x3,由 f(x)=0得 2x-x3=0,此方程无解.
当x>0时,f(x)=
-log2x,由f(x)=0得
-log2x=0,即
=log2x,
由题意可得此方程的解为x=x0.
由于函数f(x)在(0,+∞)上是减函数,f(x0)=0,
∴当0<t<x0时,f(t)恒大于零,
故选B.
点评:本题主要考查函数的零点与方程的根的关系,函数的单调性的应用,体现了化归与转化的数学思想,属于中档题.
分析:当x≤0时,f(x)=0无解.当x>0时,由题意可得f(x)=0的解为x=x0.由于函数f(x)在(0,+∞)上是减函数,f(x0)=0,故当0<t<x0时,f(t)恒大于零.
解答:当x≤0时,f(x)=2x-x3,由 f(x)=0得 2x-x3=0,此方程无解.
当x>0时,f(x)=
由题意可得此方程的解为x=x0.
由于函数f(x)在(0,+∞)上是减函数,f(x0)=0,
∴当0<t<x0时,f(t)恒大于零,
故选B.
点评:本题主要考查函数的零点与方程的根的关系,函数的单调性的应用,体现了化归与转化的数学思想,属于中档题.
练习册系列答案
相关题目
已知函数f(x)=x2-bx的图象在点A(1,f(1))处的切线l与直线3x-y+2=0平行,若数列{
}的前n项和为Sn,则S2010的值为( )
| 1 |
| f(n) |
A、
| ||
B、
| ||
C、
| ||
D、
|