题目内容
△ABC中,三内角A、B、C成等差数列,则sinA+sinC的最大值为( )
| A.2 | B.
| C.
| D.
|
由题意可得2B=A+C,又A+B+C=π
故B=
,故A+C=
,
故sinA+sinC=sinA+sin(
-A)
=sinA+sin
cosA-cos
sinA
=sinA+
cosA+
sinA
=
sinA+
cosA
=
(
sinA+
cosA)
=
sin(A+
),
又A∈(0,
),所以A+
∈(
,
),
故sin(A+
)∈(
,1],
sin(A+
)∈(
,
],
故sinA+sinC的最大值为
,
故选B
故B=
| π |
| 3 |
| 2π |
| 3 |
故sinA+sinC=sinA+sin(
| 2π |
| 3 |
=sinA+sin
| 2π |
| 3 |
| 2π |
| 3 |
=sinA+
| ||
| 2 |
| 1 |
| 2 |
=
| 3 |
| 2 |
| ||
| 2 |
=
| 3 |
| ||
| 2 |
| 1 |
| 2 |
=
| 3 |
| π |
| 6 |
又A∈(0,
| 2π |
| 3 |
| π |
| 6 |
| π |
| 6 |
| 5π |
| 6 |
故sin(A+
| π |
| 6 |
| 1 |
| 2 |
| 3 |
| π |
| 6 |
| ||
| 2 |
| 3 |
故sinA+sinC的最大值为
| 3 |
故选B
练习册系列答案
相关题目