题目内容
如图,已知椭圆的焦点为、,点为椭圆上任意一点,过作的外角平分线的垂线,垂足为点,过点作轴的垂线,垂足为,线段的中点为,则点的轨迹方程为________________
解析
(本小题满分13分)
如图,已知椭圆的焦点为、,离心率为,过点的直线交椭圆于、两点.
(1)求椭圆的方程;
(2)①求直线的斜率的取值范围;
②在直线的斜率不断变化过程中,探究和是否总相等?若相等,请给出证明,若不相等,说明理由.
如图,已知椭圆的焦点和上顶点分别为、、,我们称为椭圆的特征三角形.如果两个椭圆的特征三角形是相似的,则称这两个椭圆是“相似椭圆”,且三角形的相似比即为椭圆的相似比.
(1)已知椭圆和,判断与是否相似,如果相似则求出与的相似比,若不相似请说明理由;
(2)若与椭圆相似且半短轴长为的椭圆为,且直线与椭圆为相交于两点(异于端点),试问:当面积最大时, 是否与有关?并证明你的结论.
(3)根据与椭圆相似且半短轴长为的椭圆的方程,提出你认为有价值的相似椭圆之间的三种性质(不需证明);
如图,已知椭圆的焦点为F1,F2,点P为椭圆上任意一点,过F2作的外角平分线的垂线,垂足为点Q,过点Q作轴的垂线,垂足为N,线段QN的中点为M,则点M的轨迹方程为 。