题目内容

 

已知函数(x∈R)在区间[-1,1]上是增函数.

(Ⅰ)求实数a的值所组成的集合A;

(Ⅱ)设关于x的方程的两实数根为x1、x2,试问:是否存在实数m,使得不等式对任意a∈A及t∈[-1,1]恒成立?若存在,求0出m的取值范围;若不存在,请说明理由?

 

 

 

 

 

 

 

【答案】

 解:(Ⅰ)

因为函数f(x)在区间[-1,1]上是增函数,所以f(x)≥0在区间x∈[-1,1]恒成立

即有x2-ax-2≤0在区间[-1,1]上恒成立。    构造函数g(x)=x2-ax-2

∴满足题意的充要条件是:

所以所求的集合A=[-1,1] ………(7分)

   (Ⅱ)由题意得:得到:x2-ax-2=0………(8分)

因为△=a2+8>0 所以方程恒有两个不等的根为x1、x2由根与系数的关系有:

……(9分)

因为

所以要使不等式

对任意恒成立,

当且仅当恒成立   ………………11分

构造函数

对任意的恒成立的充要条件是

故存在实数m满足题意且为

为所求。  ………………14分

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网