题目内容

13.求垂直于直线2x-6y+1=0并且与曲线f(x)=x3+3x2-5相切的直线方程.

分析 欲求切线方程,只须求出切点坐标即可,设切点为P(a,b),先利用导数求出在切点处的导函数值,再结合导数的几何意义即可求出切线的斜率列出等式求出a,b值.从而问题解决.

解答 解:设切点为P(a,b),函数y=x3+3x2-5的导数为y′=3x2+6x
切线的斜率k=y′|x=a=3a2+6a=-3,得a=-1,代入到y=x3+3x2-5,
得b=-3,即P(-1,-3),y+3=-3(x+1),
即直线方程为:3x+y+6=0.

点评 本小题主要考查互相垂直的直线的斜率间的关系、导数的几何意义、利用导数研究曲线上某点切线方程等基础知识,考查运算求解能力.属于基础题

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网