题目内容
若x<y<0,试比较(x2+y2)(x-y)与(x2-y2)(x+y)的大小.
解析:(用作差法比较)
(x2+y2)(x-y)-(x2-y2)(x+y)
=(x-y)[(x2+y2)-(x+y)2]=-2xy(x-y).
∵x<y<0,∴xy>0,x-y<0.
∴-2xy(x-y)>0.
∴(x2+y2)(x-y)>(x2-y2)(x+y).
练习册系列答案
相关题目
题目内容
若x<y<0,试比较(x2+y2)(x-y)与(x2-y2)(x+y)的大小.
解析:(用作差法比较)
(x2+y2)(x-y)-(x2-y2)(x+y)
=(x-y)[(x2+y2)-(x+y)2]=-2xy(x-y).
∵x<y<0,∴xy>0,x-y<0.
∴-2xy(x-y)>0.
∴(x2+y2)(x-y)>(x2-y2)(x+y).