ÌâÄ¿ÄÚÈÝ

7£®ÉèÍÖÔ²C£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©µÄÀëÐÄÂÊe=$\frac{\sqrt{3}}{2}$£¬Ö±Ïßy=x+$\sqrt{2}$ÓëÒÔÔ­µãΪԲÐÄ¡¢ÍÖÔ²CµÄ¶Ì°ëÖ᳤Ϊ°ë¾¶µÄÔ²OÏàÇУ®
£¨1£©ÇóÍÖÔ²CµÄ·½³Ì£»
£¨2£©ÉèÖ±Ïßx=$\frac{1}{2}$ÓëÍÖÔ²C½»ÓÚ²»Í¬µÄÁ½µãM£¬N£¬ÒÔÏß¶ÎMNΪֱ¾¶×÷Ô²D£¬ÈôÔ²DÓëyÖáÏཻÓÚ²»Í¬µÄÁ½µãA£¬B£¬Çó¡÷ABDµÄÃæ»ý£»
£¨3£©Èçͼ£¬A1£¬A2£¬B1£¬B2ÊÇÍÖÔ²CµÄ¶¥µã£¬PÊÇÍÖÔ²CÉϳý¶¥µãÍâµÄÈÎÒâµã£¬Ö±ÏßB2P½»xÖáÓÚµãF£¬Ö±ÏßA1B2½»A2PÓÚµãE£¬ÉèA2PµÄбÂÊΪk£¬EFµÄбÂÊΪm£¬ÇóÖ¤£º2m-kΪ¶¨Öµ£®

·ÖÎö £¨1£©ÓÉÓÚÖ±Ïßy=x+$\sqrt{2}$ÓëÒÔÔ­µãΪԲÐÄ¡¢ÍÖÔ²CµÄ¶Ì°ëÖ᳤Ϊ°ë¾¶µÄÔ²OÏàÇУ¬¿ÉµÃ$\frac{|0-\sqrt{2}|}{\sqrt{2}}$=b£¬½âµÃb£®ÓÖÀëÐÄÂÊe=$\frac{\sqrt{3}}{2}$=$\frac{c}{a}$£¬b2=a2-c2£¬ÁªÁ¢½âµÃ¼´¿ÉµÃ³ö£®
£¨2£©°Ñx=$\frac{1}{2}$´úÈëÍÖÔ²·½³Ì¿ÉµÃ£º${y}^{2}=1-\frac{1}{16}$£¬¿ÉµÃ¡ÑDµÄ·½³ÌΪ£º$£¨x-\frac{1}{2}£©^{2}+{y}^{2}=\frac{15}{16}$£®Áîx=0£¬½âµÃy£¬¿ÉµÃ|AB|£¬ÀûÓÃS¡÷ABD=$\frac{1}{2}|AB|•|OD|$¼´¿ÉµÃ³ö£®
£¨3£©ÓÉ£¨1£©Öª£ºA1£¨-2£¬0£©£¬A2£¨2£¬0£©£¬B2£¨0£¬1£©£¬¿ÉµÃÖ±ÏßA1B2ADµÄ·½³Ì£¬ÉèÖ±ÏßA2PµÄ·½³ÌΪy=k£¨x-2£©£¬k¡Ù0£¬ÇÒk¡Ù$¡À\frac{1}{2}$£¬ÁªÁ¢½âµÃE£®ÉèP£¨x1£¬y1£©£¬ÓëÍÖÔ²·½³ÌÁªÁ¢¿ÉµÃ£¨4k2+1£©x2-16k2x+16k2-4=0£®½âµÃP£®ÉèF£¨x2£¬0£©£¬ÔòÓÉP£¬B2£¬FÈýµã¹²Ïߵã¬${k}_{{B}_{2}P}={k}_{{B}_{2}F}$£®¿ÉµÃF£®¼´¿ÉÖ¤Ã÷2m-kΪ¶¨Öµ£®

½â´ð £¨1£©½â£º¡ßÖ±Ïßy=x+$\sqrt{2}$ÓëÒÔÔ­µãΪԲÐÄ¡¢ÍÖÔ²CµÄ¶Ì°ëÖ᳤Ϊ°ë¾¶µÄÔ²OÏàÇУ¬
¡à$\frac{|0-\sqrt{2}|}{\sqrt{2}}$=b£¬»¯Îªb=1£®
¡ßÀëÐÄÂÊe=$\frac{\sqrt{3}}{2}$=$\frac{c}{a}$£¬b2=a2-c2=1£¬ÁªÁ¢½âµÃa=2£¬c=$\sqrt{3}$£®
¡àÍÖÔ²CµÄ·½³ÌΪ$\frac{{x}^{2}}{4}+{y}^{2}$=1£»
£¨2£©½â£º°Ñx=$\frac{1}{2}$´úÈëÍÖÔ²·½³Ì¿ÉµÃ£º${y}^{2}=1-\frac{1}{16}$£¬½âµÃy=¡À$\frac{\sqrt{15}}{4}$£®
¡à¡ÑDµÄ·½³ÌΪ£º$£¨x-\frac{1}{2}£©^{2}+{y}^{2}=\frac{15}{16}$£®
Áîx=0£¬½âµÃy=¡À$\frac{\sqrt{11}}{4}$£¬
¡à|AB|=$\frac{\sqrt{11}}{2}$£¬
¡àS¡÷ABD=$\frac{1}{2}|AB|•|OD|$=$\frac{1}{2}¡Á\frac{\sqrt{11}}{2}¡Á\frac{1}{2}$=$\frac{\sqrt{11}}{8}$£®
£¨3£©Ö¤Ã÷£ºÓÉ£¨1£©Öª£ºA1£¨-2£¬0£©£¬A2£¨2£¬0£©£¬B2£¨0£¬1£©£¬
¡àÖ±ÏßA1B2µÄ·½³ÌΪ$y=\frac{1}{2}x+1$£¬
ÓÉÌâÒ⣬ֱÏßA2PµÄ·½³ÌΪy=k£¨x-2£©£¬k¡Ù0£¬ÇÒk¡Ù$¡À\frac{1}{2}$£¬
ÓÉ$\left\{\begin{array}{l}{y=\frac{1}{2}x+1}\\{y=k£¨x-2£©}\end{array}\right.$£¬½âµÃ$E£¨\frac{4k+2}{2k-1}£¬\frac{4k}{2k-1}£©$£®
ÉèP£¨x1£¬y1£©£¬ÔòÓÉ$\left\{\begin{array}{l}{y=k£¨x-2£©}\\{\frac{{x}^{2}}{4}+{y}^{2}=1}\end{array}\right.$£¬µÃ£¨4k2+1£©x2-16k2x+16k2-4=0£®
¡à2x1=$\frac{16{k}^{2}-4}{4{k}^{2}+1}$£¬¡àx1=$\frac{8{k}^{2}-2}{4{k}^{2}+1}$£¬y1=k£¨x1-2£©=$\frac{-4k}{4{k}^{2}+1}$£®
¡à$P£¨\frac{8{k}^{2}-2}{4{k}^{2}+1}£¬\frac{-4k}{4{k}^{2}+1}£©$£®
ÉèF£¨x2£¬0£©£¬ÔòÓÉP£¬B2£¬FÈýµã¹²Ïߵã¬${k}_{{B}_{2}P}={k}_{{B}_{2}F}$£®
¼´$\frac{\frac{-4k}{4{k}^{2}+1}-1}{\frac{8{k}^{2}-2}{4{k}^{2}+1}-0}$=$\frac{0-1}{{x}_{2}-0}$£¬¡àx2=$\frac{4k-2}{2k+1}$£¬¡àF$£¨\frac{4k-2}{2k+1}£¬0£©$£®
¡àEFµÄбÂÊm=$\frac{\frac{4k}{2k-1}-0}{\frac{4k+2}{2k-1}-\frac{4k-2}{2k+1}}$=$\frac{2k+1}{4}$£®
¡à2m-k=$\frac{2k+1}{2}$-k=$\frac{1}{2}$Ϊ¶¨Öµ£®

µãÆÀ ±¾Ì⿼²éÁËÍÖÔ²ÓëÔ²µÄ±ê×¼·½³Ì¼°ÆäÐÔÖÊ¡¢Ö±ÏßÓëÍÖÔ²Ïཻת»¯Îª·½³ÌÁªÁ¢¡¢Ð±ÂʼÆË㹫ʽ¡¢ÏÒ³¤¹«Ê½¡¢Èý½ÇÐÎÃæ»ý¼ÆË㹫ʽ£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÄÑÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø