题目内容
已知数列{an}和{bn}满足a1=b1,且对任意n∈N*都有an+bn=1,| an+1 |
| an |
| bn | ||
1-
|
(1)求数列{an}和{bn}的通项公式;
(2)证明:
| a2 |
| b2 |
| a3 | ||
|
| a4 |
| b 4 |
| an+1 |
| bn+1 |
| a1 |
| b1 |
| a2 | ||
|
| a3 |
| b 3 |
| an |
| bn |
分析:(1)根据对任意n∈N*都有an+bn=1,
=
,
=
=
=
,进行变形可得
-
=1,构造等差数列{
},即可求出其通项公式,进而求得数列{an}的通项公式,并代入
=
可求得{bn}的通项公式;
(2)对于不等式的右边,可以构造函数f(x)=ln(1+x)-x,,利用导数求出函数的单调性和最值,即可证得结论;对于不等式的左边,构造函数f(x)=ln(1+x)-
,利用导数求出函数的单调性和最值,即可证得结论.
| an+1 |
| an |
| bn | ||
1-
|
| an+1 |
| an |
| bn | ||
1-
|
| 1-an | ||
1-
|
| 1 |
| 1+an |
| 1 |
| an+1 |
| 1 |
| an |
| 1 |
| an |
| an+1 |
| an |
| bn | ||
1-
|
(2)对于不等式的右边,可以构造函数f(x)=ln(1+x)-x,,利用导数求出函数的单调性和最值,即可证得结论;对于不等式的左边,构造函数f(x)=ln(1+x)-
| x |
| 1+x |
解答:(1)解:∵对任意n∈N*都有an+bn=1,
=
,
∴
=
=
=
.
∴
=
+1,即
-
=1.
∴数列{
}是首项为
,公差为1的等差数列.
∵a1=b1,且a1+b1=1,
∴a1=b1=
.
∴
=2+(n-1)=n+1.
∴an=
,bn=1-an=
,
(2)证明:∵an=
,bn=
,∴
=
.
∴所证不等式
+
+
+…+
<ln(1+n)<
+
+
+…+
,
即
+
+
+…+
<ln(1+n)<1+
+
+…+
.
①先证右边不等式:ln(1+n)<1+
+
+…+
.
令f(x)=ln(1+x)-x,则f′(x)=
-1=-
.
当x>0时,f′(x)<0,
所以函数f(x)在[0,+∞)上单调递减.
∴当x>0时,f(x)<f(0)=0,即ln(1+x)<x.
分别取x=1,
,
,,
.
得ln(1+1)+ln(1+
)+ln(1+
)+…+ln(1+
)<1+
+
+…+
.
即ln[(1+1)•(1+
)•(1+
)…(1+
)]<1+
+
+…+
.
也即ln(2×
×
×…×
)<1+
+
+…+
.
即ln(1+n)<1+
+
+…+
.
②再证左边不等式:
+
+
+…+
<ln(1+n).
令f(x)=ln(1+x)-
,则f′(x)=
-
=
.
当x>0时,f′(x)>0,
所以函数f(x)在[0,+∞)上单调递增.
∴当x>0时,f(x)>f(0)=0,即ln(1+x)>
.
分别取x=1,
,
,,
.
得ln(1+1)+ln(1+
)+ln(1+
)+…+ln(1+
)>
+
+…+
.
即ln[(1+1)•(1+
)•(1+
)••(1+
)]>
+
+…+
.
也即ln(2×
×
×…×
)>
+
+…+
.
即ln(1+n)>
+
+…+
.
∴
+
+
+…+
<ln(1+n)<
+
+
+…+
.
| an+1 |
| an |
| bn | ||
1-
|
∴
| an+1 |
| an |
| bn | ||
1-
|
| 1-an | ||
1-
|
| 1 |
| 1+an |
∴
| 1 |
| an+1 |
| 1 |
| an |
| 1 |
| an+1 |
| 1 |
| an |
∴数列{
| 1 |
| an |
| 1 |
| a1 |
∵a1=b1,且a1+b1=1,
∴a1=b1=
| 1 |
| 2 |
∴
| 1 |
| an |
∴an=
| 1 |
| n+1 |
| n |
| n+1 |
(2)证明:∵an=
| 1 |
| n+1 |
| n |
| n+1 |
| an |
| bn |
| 1 |
| n |
∴所证不等式
| a2 |
| b2 |
| a3 | ||
|
| a4 |
| b 4 |
| an+1 |
| bn+1 |
| a1 |
| b1 |
| a2 | ||
|
| a3 |
| b 3 |
| an |
| bn |
即
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| n+1 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| n |
①先证右边不等式:ln(1+n)<1+
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| n |
令f(x)=ln(1+x)-x,则f′(x)=
| 1 |
| 1+x |
| x |
| 1+x |
当x>0时,f′(x)<0,
所以函数f(x)在[0,+∞)上单调递减.
∴当x>0时,f(x)<f(0)=0,即ln(1+x)<x.
分别取x=1,
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| n |
得ln(1+1)+ln(1+
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| n |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| n |
即ln[(1+1)•(1+
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| n |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| n |
也即ln(2×
| 3 |
| 2 |
| 4 |
| 3 |
| n+1 |
| n |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| n |
即ln(1+n)<1+
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| n |
②再证左边不等式:
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| n+1 |
令f(x)=ln(1+x)-
| x |
| 1+x |
| 1 |
| 1+x |
| 1 |
| (1+x)2 |
| x |
| (1+x)2 |
当x>0时,f′(x)>0,
所以函数f(x)在[0,+∞)上单调递增.
∴当x>0时,f(x)>f(0)=0,即ln(1+x)>
| x |
| 1+x |
分别取x=1,
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| n |
得ln(1+1)+ln(1+
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| n |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 1+n |
即ln[(1+1)•(1+
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| n |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 1+n |
也即ln(2×
| 3 |
| 2 |
| 4 |
| 3 |
| n+1 |
| n |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 1+n |
即ln(1+n)>
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 1+n |
∴
| a2 |
| b2 |
| a3 | ||
|
| a4 |
| b 4 |
| an+1 |
| bn+1 |
| a1 |
| b1 |
| a2 | ||
|
| a3 |
| b 3 |
| an |
| bn |
点评:此题是个难题.考查根据数列的递推公式利用构造法求数列的通项公式,及数列的求和问题,题目综合性强,特别是问题(2)的设置,数列与不等式恒成立问题结合起来,能有效考查学生的逻辑思维能力和灵活应用知识分析解决问题的能力,体现了转化的思想和分类讨论的思想.
练习册系列答案
相关题目