题目内容
设过点P(x,y)的直线分别与x轴和y轴交于A,B两点,点Q与点P关于y轴对称,O为坐标原点,若
=3
且
•
=4.
(1)求点P的轨迹M的方程;
(2)过F(2,0)的直线与轨迹M交于A,B两点,求
•
的取值范围.
| BP |
| PA |
| OQ |
| AB |
(1)求点P的轨迹M的方程;
(2)过F(2,0)的直线与轨迹M交于A,B两点,求
| FA |
| FB |
(1)∵过点P(x,y)的直线分别与x轴和y轴交于A,B两点,点Q与点P关于y轴对称,
∴Q(-x,y),设A(a,0),B(0,b),
∵O为坐标原点,∴
=(x,y-b),
=(a-x,-y),
=(-x,y),
=(-a,b),
∵
=3
且
•
=4,
∴
,
解得点P的轨迹M的方程为
+y2=1.
(2)设过F(2,0)的直线方程为y=kx-2k,
联立
,得(3k2+1)x2-12k2x+12k2-3=0,
设A(x1,y1),B(x2,y2),则x1+x2=
,x1x2=
,
=(x1-2,y1),
=(x2-2,y2),
∴
•
=(x1-2)(x2-2)+y1y2
=(1+k2)(x1-2)(x2-2)
=(1+k2)[x1x2-2(x1+x2)+4]
=(1+k2)(
-
+4)
=
=
+
,
∴当k2→∞
•
的最小值→
;当k=0时,
•
的最大值为1.
∴
•
的取值范围是(
,1].
∴Q(-x,y),设A(a,0),B(0,b),
∵O为坐标原点,∴
| BP |
| PA |
| OQ |
| AB |
∵
| BP |
| PA |
| OQ |
| AB |
∴
|
解得点P的轨迹M的方程为
| x2 |
| 3 |
(2)设过F(2,0)的直线方程为y=kx-2k,
联立
|
设A(x1,y1),B(x2,y2),则x1+x2=
| 12k2 |
| 3k2+1 |
| 12k2-3 |
| 3k2+1 |
| FA |
| FB |
∴
| FA |
| FB |
=(1+k2)(x1-2)(x2-2)
=(1+k2)[x1x2-2(x1+x2)+4]
=(1+k2)(
| 12k2-3 |
| 3k2+1 |
| 24k2 |
| 3k2+1 |
=
| k2+1 |
| 3k2+1 |
=
| 1 |
| 3 |
| 2 |
| 9k2+3 |
∴当k2→∞
| FA |
| FB |
| 1 |
| 3 |
| FA |
| FB |
∴
| FA |
| FB |
| 1 |
| 3 |
练习册系列答案
相关题目