搜索
题目内容
若实数x,y满足不等式组
且x+y的最大值为9,则实数m=
[ ]
A.
-2
B.
-1
C.
1
D.
2
试题答案
相关练习册答案
答案:C
练习册系列答案
点睛新教材全能解读系列答案
快乐成长小考总复习系列答案
小考神童系列答案
小学教材完全解读系列答案
英语听力模拟题系列答案
优翼阅读给力系列答案
领航中考命题调研系列答案
初中古诗文详解系列答案
口算应用题卡系列答案
中考考点经典新题系列答案
相关题目
定义在R上的函数y=f(x),若对任意不等实数x
1
,x
2
满足
f(
x
1
)-f(
x
2
)
x
1
-
x
2
<0
,且对于任意的x,y∈R,不等式f(x
2
-2x)+f(2y-y
2
)≤0成立.又函数y=f(x-1)的图象关于点(1,0)对称,则当 1≤x≤4时,
y
x
的取值范围为
[-
1
2
,1]
[-
1
2
,1]
.
定义在R上的函数y=f(x),若对任意不等实数x
1
,x
2
满足
,且对于任意的x,y∈R,不等式f(x
2
-2x)+f(2y-y
2
)≤0成立.又函数y=f(x-1)的图象关于点(1,0)对称,则当 1≤x≤4时,
的取值范围为
.
定义在R上的函数y=f(x),若对任意不等实数x
1
,x
2
满足
,且对于任意的x,y∈R,不等式f(x
2
-2x)+f(2y-y
2
)≤0成立.又函数y=f(x-1)的图象关于点(1,0)对称,则当 1≤x≤4时,
的取值范围为
.
定义在R上的函数y=f(x),若对任意不等实数x
1
,x
2
满足
,且对于任意的x,y∈R,不等式f(x
2
-2x)+f(2y-y
2
)≤0成立.又函数y=f(x-1)的图象关于点(1,0)对称,则当 1≤x≤4时,
的取值范围为
.
定义在R上的函数y=f(x),若对任意不等实数x
1
,x
2
满足
,且对于任意的x,y∈R,不等式f(x
2
-2x)+f(2y-y
2
)≤0成立.又函数y=f(x-1)的图象关于点(1,0)对称,则当 1≤x≤4时,
的取值范围为
.
关 闭
试题分类
高中
数学
英语
物理
化学
生物
地理
初中
数学
英语
物理
化学
生物
地理
小学
数学
英语
其他
阅读理解答案
已回答习题
未回答习题
题目汇总
试卷汇总
练习册解析答案