题目内容

定义在R上的函数f(x)对任意两个不相等实数a,b,总有
f(a)-f(b)
a-b
>0
成立,则必有(  )
A.函数f(x)是先增加后减少B.函数f(x)是先减少后增加
C.f(x)在R上是增函数D.f(x)在R上是减函数
任意两个不相等实数a,b,总有
f(a)-f(b)
a-b
>0
成立,即有a>b时,f(a)>f(b),a<b时,f(a)<f(b),由增函数的定义知:函数f(x)在R上是增函数.
故选C
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网