题目内容

已知函数f(x)=kx3+3(k-1)x2-k2+1(k>0)的单调递减区间是(0,4),则k的值是______.
对函数求导数,得f'(x)=3kx2+6(k-1)x
∵函数的单调递减区间是(0,4),
∴f'(x)<0的解集是(0,4),
∵k>0,
∴3kx2+6(k-1)x<0等价于3kx(x-4)<0,
得6(k-1)=-12k,解之得k=
1
3

故答案为:
1
3
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网