题目内容
【题目】在△ABC中,a,b,c分别是角A,B,C的对边,且2cosAcosC(1-tanAtanC)=1.
(1)求B的大小;
(2)若b=
,求△ABC面积的最大值.
【答案】(1)
;(2)
.
【解析】试题分析:
(1)先对2cosAcosC(1- tanAtanC)=1执行切化弦,即将tanAtanC化为
,整理得
,∴
,再由三角形
,及诱导公式,得
,由此可得
.
(2)要求△ABC面积的最大值,由
需求出
的最大值.在第一问的基础上,由余弦定理及重要不等式得
,又b=
, 可得
,故
.
试题解析:
(1)由2cosAcosC(1-tanAtanC)=1, 得
.
∴
. ∴
.
∴
. 又
, ∴
.
(2)![]()
又b=
, ∴
. ![]()
所以当且仅当
时,
有最大值为![]()
练习册系列答案
相关题目
【题目】某企业生产的某种产品被检测出其中一项质量指标存在问题.该企业为了检查生产该产品的甲,乙两条流水线的生产情况,随机地从这两条流水线上生产的大量产品中各抽取
件产品作为样本,测出它们的这一项质量指标值.若该项质量指标值落在
内,则为合格品,否则为不合格品.表
是甲流水线样本的频数分布表,图
是乙流水线样本的频率分布直方图.
表 | ||||||||||||
|
图 |
|
(Ⅰ)根据图
,估计乙流水线生产产品该质量指标值的中位数.
(Ⅱ)若将频率视为概率,某个月内甲,乙两条流水线均生产了
件产品,则甲,乙两条流水线分别生产出不合格品约多少件.
(Ⅲ)根据已知条件完成下面
列联表,并回答是否有
的把握认为“该企业生产的这种产品的质量指标值与甲,乙两条流水线的选择有关”?
甲生产线 | 乙生产线 | 合计 | |
合格品 | |||
不合格品 | |||
合计 |
附:
(其中
样本容量)
|
|
|
|
|
|
|
|