题目内容
已知函数f(x)=
x3-
x2,g(x)=
-kx且f(x)在区间(2,+∞)上为增函数.
(1)求k的取值范围;
(2)若函数f(x)与g(x)的图象有三个不同的交点,求实数k的取值范围.
| 1 |
| 3 |
| (k+1) |
| 2 |
| 1 |
| 3 |
(1)求k的取值范围;
(2)若函数f(x)与g(x)的图象有三个不同的交点,求实数k的取值范围.
(1)由题意f′(x)=x2-(k+1)x,
因为f(x)在区间(2,+∞)上为增函数,
所以f′(x)=x2-(k+1)x≥0在(2,+∞)上恒成立,即k+1≤x恒成立,
又x>2,所以k+1≤2,故k≤1,
当k=1时,f′(x)=x2-2x=(x-1)2-1在x∈(2,+∞)恒大于0,故f(x)在(2,+∞)上单增,符合题意.
所以k的取值范围为k≤1.
(2)设h(x)=f(x)-g(x)=
-
x2+kx-
,
h′(x)=x2-(k+1)x+k=(x-k)(x-1),
令h′(x)=0得x=k或x=1,由(1)知k≤1,
①当k=1时,h′(x)=(x-1)2≥0,h(x)在R上递增,显然不合题意;
②当k<1时,h(x),h′(x)随x的变化情况如下表:

由于
>0,欲使f(x)与g(x)图象有三个不同的交点,
即方程f(x)=g(x),也即h(x)=0有三个不同的实根.
故需-
+
-
>0即(k-1)(k2-2k-2)<0,
所以
,解得k<1-
.
综上,所求k的范围为k<1-
.
因为f(x)在区间(2,+∞)上为增函数,
所以f′(x)=x2-(k+1)x≥0在(2,+∞)上恒成立,即k+1≤x恒成立,
又x>2,所以k+1≤2,故k≤1,
当k=1时,f′(x)=x2-2x=(x-1)2-1在x∈(2,+∞)恒大于0,故f(x)在(2,+∞)上单增,符合题意.
所以k的取值范围为k≤1.
(2)设h(x)=f(x)-g(x)=
| x3 |
| 3 |
| (k+1) |
| 2 |
| 1 |
| 3 |
h′(x)=x2-(k+1)x+k=(x-k)(x-1),
令h′(x)=0得x=k或x=1,由(1)知k≤1,
①当k=1时,h′(x)=(x-1)2≥0,h(x)在R上递增,显然不合题意;
②当k<1时,h(x),h′(x)随x的变化情况如下表:
由于
| k-1 |
| 2 |
即方程f(x)=g(x),也即h(x)=0有三个不同的实根.
故需-
| k3 |
| 6 |
| k2 |
| 2 |
| 1 |
| 3 |
所以
|
| 3 |
综上,所求k的范围为k<1-
| 3 |
练习册系列答案
相关题目
已知函数f(x)=
,g(x)=1+
,若f(x)>g(x),则实数x的取值范围是( )
| 1 |
| |x| |
| x+|x| |
| 2 |
| A、(-∞,-1)∪(0,1) | ||||
B、(-∞,-1)∪(0,
| ||||
C、(-1,0)∪(
| ||||
D、(-1,0)∪(0,
|