题目内容
设数列{an}的前n项的和Sn=| 4 |
| 3 |
| 1 |
| 3 |
| 2 |
| 3 |
(Ⅰ)求首项a1与通项an;
(Ⅱ)设Tn=
| 2n |
| Sn |
| n |
| i=1 |
| 3 |
| 2 |
分析:对于(Ⅰ)首先由数列{an}的前n项的和求首项a1与通项an,可先求出Sn-1,然后有an=Sn-Sn-1,公比为4的等比数列,从而求解;
对于(Ⅱ)已知Tn=
,n=1,2,3,…,将an=4n-2n代入Sn=
an-
×2n+1+
,n=1,2,3,得Sn=
×(4n-2n)-
×2n+1+
=
×(2n+1-1)(2n+1-2)
然后再利用求和公式进行求解.
对于(Ⅱ)已知Tn=
| 2n |
| Sn |
| 4 |
| 3 |
| 1 |
| 3 |
| 2 |
| 3 |
| 4 |
| 3 |
| 1 |
| 3 |
| 2 |
| 3 |
| 1 |
| 3 |
然后再利用求和公式进行求解.
解答:解:(Ⅰ)由Sn=
an-
×2n+1+
,n=1,2,3,①得a1=S1=
a1-
×4+
所以a1=2.
再由①有Sn-1=
an-1-
×2n+
,n=2,3,4,
将①和②相减得:an=Sn-Sn-1=
(an-an-1)-
×(2n+1-2n),n=2,3,
整理得:an+2n=4(an-1+2n-1),n=2,3,
因而数列{an+2n}是首项为a1+2=4,公比为4的等比数列,即:an+2n=4×4n-1=4n,n=1,2,3,
因而an=4n-2n,n=1,2,3,
(Ⅱ)将an=4n-2n代入①得Sn=
×(4n-2n)-
×2n+1+
=
×(2n+1-1)(2n+1-2)
=
×(2n+1-1)(2n-1)
Tn=
=
×
=
×(
-
)
所以,
Ti=
(
-
)=
×(
-
)<
| 4 |
| 3 |
| 1 |
| 3 |
| 2 |
| 3 |
| 4 |
| 3 |
| 1 |
| 3 |
| 2 |
| 3 |
所以a1=2.
再由①有Sn-1=
| 4 |
| 3 |
| 1 |
| 3 |
| 2 |
| 3 |
将①和②相减得:an=Sn-Sn-1=
| 4 |
| 3 |
| 1 |
| 3 |
整理得:an+2n=4(an-1+2n-1),n=2,3,
因而数列{an+2n}是首项为a1+2=4,公比为4的等比数列,即:an+2n=4×4n-1=4n,n=1,2,3,
因而an=4n-2n,n=1,2,3,
(Ⅱ)将an=4n-2n代入①得Sn=
| 4 |
| 3 |
| 1 |
| 3 |
| 2 |
| 3 |
| 1 |
| 3 |
=
| 2 |
| 3 |
Tn=
| 2n |
| Sn |
| 3 |
| 2 |
| 2n |
| (2n+1-1)(2n-1) |
| 3 |
| 2 |
| 1 |
| 2n-1 |
| 1 |
| 2n+1-1 |
所以,
| n |
| i=1 |
| 3 |
| 2 |
| n |
| i=1 |
| 1 |
| 2i-1 |
| 1 |
| 2i+1-1 |
| 3 |
| 2 |
| 1 |
| 21-1 |
| 1 |
| 2i+1-1 |
| 3 |
| 2 |
点评:此题主要考查数列的递推式和数列的求和,难度比较大,做题要仔细.
练习册系列答案
相关题目