题目内容
已知数列{An}的前n项和为Sn,a1=1,满足下列条件
①?n∈N*,an≠0;
②点Pn(an,Sn)在函数f(x)=
的图象上;
(I)求数列{an}的通项an及前n项和Sn;
(II)求证:0≤|Pn+1Pn+2|-|PnPn+1|<1.
①?n∈N*,an≠0;
②点Pn(an,Sn)在函数f(x)=
| x2+x |
| 2 |
(I)求数列{an}的通项an及前n项和Sn;
(II)求证:0≤|Pn+1Pn+2|-|PnPn+1|<1.
(I)由题意Sn=
,
当n≥2时an=Sn-Sn-1=
-
,
整理,得(an+an-1)(an-an-1-1)=0,
又?n∈N*,an≠0,所以an+an-1=0或an-an-1-1=0,
当an+an-1=0时,a1=1,
=-1,
得an=(-1)n-1,Sn=
;
当an-an-1-1=0时,a1=1,an-an-1=1,
得an=n,Sn=
.
(II)证明:当an+an-1=0时,Pn((-1)n-1,
),
|Pn+1Pn+2|=|PnPn+1|=
,所以|Pn+1Pn+2|-|PnPn+1|=0,
当an-an-1-1=0时,Pn(n,
),
|Pn+1Pn+2|=
,|PnPn+1|=
,
|Pn+1Pn+2|-|PnPn+1|=
-
=
=
,
因为
>n+2,
>n+1,
所以0<
<1,
综上0≤|Pn+1Pn+2|-|PnPn+1|<1.
| an2+an |
| 2 |
当n≥2时an=Sn-Sn-1=
| an2+an |
| 2 |
| an-12+an-1 |
| 2 |
整理,得(an+an-1)(an-an-1-1)=0,
又?n∈N*,an≠0,所以an+an-1=0或an-an-1-1=0,
当an+an-1=0时,a1=1,
| an |
| an-1 |
得an=(-1)n-1,Sn=
| 1-(-1)n |
| 2 |
当an-an-1-1=0时,a1=1,an-an-1=1,
得an=n,Sn=
| n2+n |
| 2 |
(II)证明:当an+an-1=0时,Pn((-1)n-1,
| 1-(-1)n |
| 2 |
|Pn+1Pn+2|=|PnPn+1|=
| 5 |
当an-an-1-1=0时,Pn(n,
| n2+n |
| 2 |
|Pn+1Pn+2|=
| 1+(n+2)2 |
| 1+(n+1)2 |
|Pn+1Pn+2|-|PnPn+1|=
| 1+(n+2)2 |
| 1+(n+1)2 |
=
| 1+(n+2)2-1-(n+1)2 | ||||
|
=
| 2n+3 | ||||
|
因为
| 1+(n+2)2 |
| 1+(n+1)2 |
所以0<
| 2n+3 | ||||
|
综上0≤|Pn+1Pn+2|-|PnPn+1|<1.
练习册系列答案
相关题目
已知数列{an}的前n项和Sn=an2+bn(a、b∈R),且S25=100,则a12+a14等于( )
| A、16 | B、8 | C、4 | D、不确定 |