题目内容

已知函数f(x)=asin(πx+α)+bcos(πx+β),其中a,b,α,β都是非零实数,且满足f(2 005)=-1,则f(2 006)等于(    )

A.-1            B.0            C.1             D.2

解析:由已知,f(2 005)=asin(2 005π+α)+bcos(2 005π+β)=asin(π+α)+bcos(π+β)=-asinα-bcosβ=-1,

∴asinα+bcosβ=1,而f(2 006)=asin(2 006π+α)+bcos(2 006π+β)=asinα+bcosβ=1.

答案:C

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网