题目内容
已知函数f(x)=
(x∈R).
(Ⅰ)证明f(x)+f(1-x)=
;
(Ⅱ)若数列{an}的通项公式为an=f(
)(m∈N*,n=1,2,…,m),求数列{an}的前m项和Sm;
(Ⅲ)设数列{bn}满足:b1=
,bn+1=
+bn,设Tn=
+
+…+
,若(Ⅱ)中的Sm满足对任意不小于2的正整数n,Sm<Tn恒成立,试求m的最大值
| 1 |
| 4x+2 |
(Ⅰ)证明f(x)+f(1-x)=
| 1 |
| 2 |
(Ⅱ)若数列{an}的通项公式为an=f(
| n |
| m |
(Ⅲ)设数列{bn}满足:b1=
| 1 |
| 3 |
| b | 2n |
| 1 |
| b1+1 |
| 1 |
| b2+1 |
| 1 |
| bn+1 |
(Ⅰ)证明:∵f(x)=
,
∴f(1-x)=
=
=
,
∴f(x)+f(1-x)=
+
=
=
.
故答案为
..
(Ⅱ)由(Ⅰ)可知f(x)+f(1-x)=
,
∴f(
)+f(1-
)=
(1≤k≤m-1),
即f(
)+f(
)=
.
∴ak+am-k=
,
am=f(
)=f(1)=
,
又Sm=a1+a2++am-1+am①Sm=am-1+am-2++a1+am②
①+②得2Sm=(m-1)×
+2am=
-
,
∴答案为Sm=
(3m-1);
(Ⅲ)∵b1=
,bn+1=
+bn=bn(bn+1)③
∴对任意n∈N*,bn>0④
=
=
-
,
∴
=
-
,
∴Tn=(
-
)+(
-
)++(
-
)=
-
=3-
∵bn+1-bn=bn2>0,∴bn+1>bn.
∴数列{bn}是单调递增数列.∴Tn关于n递增,
∴当n≥2,且n∈N*时,Tn≥T2.
∵b1=
,b2=
(
+1)=
,b3=
(
+1)=
,
∴Tn≥T2=3-
=
.(14分)
由题意Sm<
,即
(3m-1)<
,
∴m<
=6
∴m的最大值为6.
故答案为6.
| 1 |
| 4x+2 |
∴f(1-x)=
| 1 |
| 41-x+2 |
| 4x |
| 4+2•4x |
| 4x |
| 2(4x+2) |
∴f(x)+f(1-x)=
| 1 |
| 4x+2 |
| 4x |
| 2(4x+2) |
| 2+4x |
| 2(4x+2) |
| 1 |
| 2 |
故答案为
| 1 |
| 2 |
(Ⅱ)由(Ⅰ)可知f(x)+f(1-x)=
| 1 |
| 2 |
∴f(
| k |
| m |
| k |
| m |
| 1 |
| 2 |
即f(
| k |
| m |
| m-k |
| m |
| 1 |
| 2 |
∴ak+am-k=
| 1 |
| 2 |
am=f(
| m |
| m |
| 1 |
| 6 |
又Sm=a1+a2++am-1+am①Sm=am-1+am-2++a1+am②
①+②得2Sm=(m-1)×
| 1 |
| 2 |
| m |
| 2 |
| 1 |
| 6 |
∴答案为Sm=
| 1 |
| 12 |
(Ⅲ)∵b1=
| 1 |
| 3 |
| b | 2n |
∴对任意n∈N*,bn>0④
| 1 |
| bn+1 |
| 1 |
| bn(bn+1) |
| 1 |
| bn |
| 1 |
| bn+1 |
∴
| 1 |
| bn+1 |
| 1 |
| bn |
| 1 |
| bn+1 |
∴Tn=(
| 1 |
| b1 |
| 1 |
| b2 |
| 1 |
| b2 |
| 1 |
| b3 |
| 1 |
| bn |
| 1 |
| bn+1 |
| 1 |
| b1 |
| 1 |
| bn+1 |
| 1 |
| bn+1 |
∵bn+1-bn=bn2>0,∴bn+1>bn.
∴数列{bn}是单调递增数列.∴Tn关于n递增,
∴当n≥2,且n∈N*时,Tn≥T2.
∵b1=
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 3 |
| 4 |
| 9 |
| 4 |
| 9 |
| 4 |
| 9 |
| 52 |
| 81 |
∴Tn≥T2=3-
| 1 |
| b3 |
| 75 |
| 52 |
由题意Sm<
| 75 |
| 52 |
| 1 |
| 12 |
| 75 |
| 52 |
∴m<
| 238 |
| 39 |
| 4 |
| 39 |
故答案为6.
练习册系列答案
相关题目