题目内容

已知数列{an}是公比大于1的等比数列,满足a3•a4=128,a2+a5=36;数列{bn}满足bn+1=2bn-bn-1(n∈N*,n≥2),且b2≠b1=1,b2,b4,b8成等比数列.
(1)求{an}及{bn}的通项公式;
(2)求数列{anbn}的前n项和Sn
(1)依题意,
a3a4=128
a2+a5=36
?
a2a5=128
a2+a5=36
,又a5>a2
a2=4
a5=32
,解得
a1=2
q=2

∴an=2n
由bn+1=2bn-bn-1,得2bn=bn+1+bn-1(n∈N*,n≥2),
∴{bn}是等差数列,设其公差为d,由b42=b2•b8及b1=1,得:(1+3d)2=(1+d)(1+7d),
∴d2=d,又b2≠b1
∴d=1,
∴bn=1+(n-1)×1=n.
∴an=2n,bn=n;
(2)由Sn=1×21+2×22+…+(n-1)×2n-1+n×2n得:
2Sn=1×22+…+(n-1)×2n+n×2n+1
两式相减得:-Sn=(21+22+…+2n)-n×2n+1=
2(1-2n)
1-2
-n×2n+1=-2+(1-n)×2n+1
故Sn=(n-1)×2n+1+2.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网