题目内容

精英家教网函数f(x)=Asin(ωx+φ)(其中A>0,ω>0,|φ|<
π
2
)的图象如图所示,为了得到y=cos2x的图象,则只要将f(x)的图象(  )
A、向左平移
π
6
个单位长度
B、向右平移
π
6
个单位长度
C、向左平移
π
12
个单位长度
D、向右平移
π
12
个单位长度
分析:先根据图象确定A和T的值,进而根据三角函数最小正周期的求法求ω的值,再将特殊点代入求出φ值从而可确定函数f(x)的解析式,然后根据诱导公式将函数化为余弦函数,再平移即可.
解答:解:由图象可知A=1,T=π,∴ω=
T
=2
∴f(x)=sin(2x+φ),又因为f(
12
)=sin(
6
+φ)=-1
6
+φ=
2
+2kπ,φ=
π
3
+2kπ
(k∈Z)
∵|φ|
π
2
,∴φ=
π
3

∴f(x)=sin(2x+
π
3
)=sin(
π
2
+2x-
π
6
)=cos(2x-
π
6

∴将函数f(x)向左平移
π
12
可得到cos[2(x+
π
12
)-
π
6
]=cos2x=y
故选C.
点评:本题主要考查根据图象求函数解析式和方法和三角函数的平移变换.根据图象求三角函数解析式时,一般先根据图象确定A的值和最小正周期的值,进而求出w的值,再将特殊点代入求φ的值.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网