题目内容
在△ABC中,a,b,c分别为内角A,B,C的对边,且2asinA=(2b+c)sinB+(2c+b)sinC.
(Ⅰ)求A的大小;
(Ⅱ)求sinB+sinC的最大值.
(Ⅰ)求A的大小;
(Ⅱ)求sinB+sinC的最大值.
(Ⅰ)设
=
=
=2R
则a=2RsinA,b=2RsinB,c=2RsinC
∵2asinA=(2b+c)sinB+(2c+b)sinC
方程两边同乘以2R
∴2a2=(2b+c)b+(2c+b)c
整理得a2=b2+c2+bc
∵由余弦定理得a2=b2+c2-2bccosA
故cosA=-
,A=120°
(Ⅱ)由(Ⅰ)得:sinB+sinC
=sinB+sin(60°-B)
=
cosB+
sinB
=sin(60°+B)
故当B=30°时,sinB+sinC取得最大值1.
| a |
| sinA |
| b |
| sinB |
| c |
| sinC |
则a=2RsinA,b=2RsinB,c=2RsinC
∵2asinA=(2b+c)sinB+(2c+b)sinC
方程两边同乘以2R
∴2a2=(2b+c)b+(2c+b)c
整理得a2=b2+c2+bc
∵由余弦定理得a2=b2+c2-2bccosA
故cosA=-
| 1 |
| 2 |
(Ⅱ)由(Ⅰ)得:sinB+sinC
=sinB+sin(60°-B)
=
| ||
| 2 |
| 1 |
| 2 |
=sin(60°+B)
故当B=30°时,sinB+sinC取得最大值1.
练习册系列答案
相关题目
在△ABC中,∠A、∠B、∠C所对的边长分别是a、b、c.满足2acosC+ccosA=b.则sinA+sinB的最大值是( )
A、
| ||||
| B、1 | ||||
C、
| ||||
D、
|