搜索
题目内容
本题8分)
已知
,且
,
.
(1)求
解析式
(2)判断函数
的单调性,并给予证明
试题答案
相关练习册答案
(2)略
略
练习册系列答案
期末冲刺名校考题系列答案
优化探究同步导学案系列答案
名师点拨配套练习课时作业系列答案
多元评价与素质提升系列答案
一卷通系列答案
新教材同步练系列答案
魔力一卷通系列答案
初中生期末大考卷系列答案
百年学典课时学练测系列答案
成功一号名卷天下优化测试卷系列答案
相关题目
设函数
,常数
.
(1)若
,判断
在区间
上的单调性,并加以证明;
(2)若
在区间
上的单调递增,求
的取值范围.
函数
,当
时,
恒成立,则
的最大值与最小值之和为 ( )
A. 18
B. 16
C. 14
D.
已知函数
是定义在
上的增函数,函数
的图象关于点
(1 , 0)对称,若对任意的
,不等式
恒成立,则当
时,
的取值范围是
____▲_____
设
,则
_________。
(本小题12分)设
是定义在
上的函数,且对任意
,当
时,都有
;
(1)当
时,比较
的大小;
(2)解不等式
;
(3)设
且
,求
的取值范围。
已知函数
则函数的最大值为__,最小值为_____
关于函数
,有下列命题:
①其图象关于
轴对称;
②当
时,
是增函数;当
时,
是减函数;
③
的最小值是
;
④
在区间(-1,0)、(2,+∞)上是增函数;
⑤
无最大值,也无最小值.
其中所有正确结论的序号是
.
(本小题满分12分)已知函数
,且
。
(1)求
的值;
(2)判定
的奇偶性;
(3)判断
在
上的单调性,并给予证明。
关 闭
试题分类
高中
数学
英语
物理
化学
生物
地理
初中
数学
英语
物理
化学
生物
地理
小学
数学
英语
其他
阅读理解答案
已回答习题
未回答习题
题目汇总
试卷汇总
练习册解析答案