题目内容
(2012•蚌埠模拟)已知函数f(x)=
,数列{an}满足a1=2,且an=
f(an-1)(n∈N*,n≥2).
(1)求证:数列{
}是等差数列;
(2)对一切正整数n,令Sn=a1a2+a2a3+…+anan+1,求Sn.
| 2x |
| x+1 |
| 1 |
| 2 |
(1)求证:数列{
| 1 |
| an |
(2)对一切正整数n,令Sn=a1a2+a2a3+…+anan+1,求Sn.
分析:(1)由题意可得 an=
,化简可得
=1+
,从而得出结论.
(2)由(1)可得
=
+(n-1)×1=
,得 an=
,用裂项法求出Sn=a1a2+a2a3+…+anan+1 的值.
| an-1 |
| an-1+1 |
| 1 |
| an |
| 1 |
| an-1 |
(2)由(1)可得
| 1 |
| an |
| 1 |
| 2 |
| 2n-1 |
| 2 |
| 2 |
| 2n-1 |
解答:解:(1)证明:由题意可得 an=
,∴
=1+
,∴{
}是以1为公差的等差数列.
(2)由(1)可得
=
+(n-1)×1=
,∴an=
.
故Sn=a1a2+a2a3+…+anan+1 =4×
+4×
+4×
+…+4×
=4[1-
+
-
+
-
+…+
-
]=4×(1-
)=
.
| an-1 |
| an-1+1 |
| 1 |
| an |
| 1 |
| an-1 |
| 1 |
| an |
(2)由(1)可得
| 1 |
| an |
| 1 |
| 2 |
| 2n-1 |
| 2 |
| 2 |
| 2n-1 |
故Sn=a1a2+a2a3+…+anan+1 =4×
| 1 |
| 1×3 |
| 1 |
| 3×5 |
| 1 |
| 5×7 |
| 1 |
| (2n-1)(2n+1) |
=4[1-
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 5 |
| 1 |
| 5 |
| 1 |
| 7 |
| 1 |
| 2n-1 |
| 1 |
| 2n+1 |
| 1 |
| 2n+1 |
| 4n |
| 2n+1 |
点评:本题主要考查等差关系的确定,用裂项法对数列进行求和,属于中档题.
练习册系列答案
相关题目