题目内容

设F(x)=f(x)g(x)是R上的奇函数,当x<0时,f(x)g(x)+f(x)g(x)>0,且g(2)=0,则不等式F(x)<0的解集是(  )
A.(-2,0)∪(2,+∞)B.(-2,0)∪(0,2)C.(-∞,-2)∪(2,+∞)D.(-∞,-2)∪(0,2)
因 f′(x)g(x)+f(x)g′(x)>0,
即[f(x)g(x)]'>0
故F(x)在x<0时递增,
又∵F(x)=f(x)g(x)是R上的奇函数,
∴F(x)的图象关于原点对称,
所以F(x)在x>0时也是增函数.
∵f(2)g(2)=0,
∴f(-2)g(-2)=0.
即F(-2)=0且F(2)=0
所以F(x)>0的解集为:x<-2或0<x<2.
故选D.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网