题目内容
已知函数f(x)=(| x |
| 4 |
| an+1-1 |
(Ⅰ)求证{
| an |
(Ⅱ)若数列{bn}的前n项和为Sn,求Sn.
分析:(Ⅰ)先由函数f(x)=(
-2)2(x≥4),求得反函数,再由an+1=f-1(an)求得
-
=2(n∈N*)由等差数列的定义得证.(Ⅱ)由(Ⅰ)可计算得an=(2n-1)2从而计算得到bn=
=
=
=
=
-
,最后由错位相消法求和.
| x |
| an+1 |
| an |
| 4 |
| an+1-1 |
| 4 |
| (2n+1)2-1 |
| 1 |
| n2+n |
| 1 |
| n(n+1) |
| 1 |
| n |
| 1 |
| n+1 |
解答:解:(Ⅰ)∵f(x)=(
-2)2(x≥4),
∴f-1(x)=(
+2)2(x≥0),
∴an+1=f-1(an)=(
+2)2,
即
-
=2(n∈N*).
∴数列{
}是以
=1为首项,公差为2的等差数列.
(Ⅱ)由(Ⅰ)得:
=1+2(n-1)=2n-1,所以an=(2n-1)2
∴bn=
=
=
=
=
-
∴Sn=b1+b2+…+bn=(1-
)+(
-
)+…+(
-
)=
| x |
∴f-1(x)=(
| x |
∴an+1=f-1(an)=(
| an |
即
| an+1 |
| an |
∴数列{
| an |
| a1 |
(Ⅱ)由(Ⅰ)得:
| an |
∴bn=
| 4 |
| an+1-1 |
| 4 |
| (2n+1)2-1 |
| 1 |
| n2+n |
| 1 |
| n(n+1) |
| 1 |
| n |
| 1 |
| n+1 |
∴Sn=b1+b2+…+bn=(1-
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| n |
| 1 |
| n+1 |
| n |
| n+1 |
点评:本题主要考查数列与函数的综合运用,主要涉及了等差数列的定义及通项公式,错位相消法求和等问题,属中档题,是常考类型.
练习册系列答案
相关题目
已知函数f(x)=x2-bx的图象在点A(1,f(1))处的切线l与直线3x-y+2=0平行,若数列{
}的前n项和为Sn,则S2010的值为( )
| 1 |
| f(n) |
A、
| ||
B、
| ||
C、
| ||
D、
|