题目内容

已知函数f(x)=(
x
-2
2(x≥4)的反函数为f-1(x),数列{an}满足:a1=1,an+1=f-1(an)(n∈N*),数列{bn}满足bn=
4
an+1-1
(n∈N×)

(Ⅰ)求证{
an
}为等差数列;
(Ⅱ)若数列{bn}的前n项和为Sn,求Sn
分析:(Ⅰ)先由函数f(x)=(
x
-2
2(x≥4),求得反函数,再由an+1=f-1(an)求得
an+1
-
an
=2(n∈N*)由等差数列的定义得证.(Ⅱ)由(Ⅰ)可计算得an=(2n-1)2从而计算得到bn=
4
an+1-1
=
4
(2n+1)2-1
=
1
n2+n
=
1
n(n+1)
=
1
n
-
1
n+1
,最后由错位相消法求和.
解答:解:(Ⅰ)∵f(x)=(
x
-2
2(x≥4),
∴f-1(x)=(
x
+2
2(x≥0),
∴an+1=f-1(an)=(
an
+2)2
an+1
-
an
=2(n∈N*).
∴数列{
an
}是以
a1
=1为首项,公差为2的等差数列.
(Ⅱ)由(Ⅰ)得:
an
=1+2(n-1)=2n-1,所以an=(2n-1)2
∴bn=
4
an+1-1
=
4
(2n+1)2-1
=
1
n2+n
=
1
n(n+1)
=
1
n
-
1
n+1

∴Sn=b1+b2+…+bn=(1-
1
2
)+(
1
2
-
1
3
)+…+(
1
n
-
1
n+1
)=
n
n+1
点评:本题主要考查数列与函数的综合运用,主要涉及了等差数列的定义及通项公式,错位相消法求和等问题,属中档题,是常考类型.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网