题目内容
求下列函数的导数:(1)y=x2sinx;
(2)y=ln(x+
| 1+x2 |
(3)y=
| ex+1 |
| ex-1 |
(4)y=
| x+cosx |
| x+sinx |
分析:根据函数的求导公式可得答案.
解答:解:(1)y′=(x2)′sinx+x2(sinx)′=2xsinx+x2cosx.
(2)y′=
•(x+
)′
=
(1+
)
=
.
(3)y′=
=
.
(4)y′=
=
=
.
(2)y′=
| 1 | ||
x+
|
| 1+x2 |
=
| 1 | ||
x+
|
| x | ||
|
=
| 1 | ||
|
(3)y′=
| (ex+1)′(ex-1)-(ex+1)(ex-1)′ |
| (ex-1)2 |
=
| -2ex |
| (ex-1)2 |
(4)y′=
| (x+cosx)′(x+sinx)-(x+cosx)(x+sinx)′ |
| (x+sinx)2 |
=
| (1-sinx)(x+sinx)-(x+cosx)(1+cosx) |
| (x+sinx)2 |
=
| -xcosx-xsinx+sinx-cosx-1 |
| (x+sinx)2 |
点评:本题主要考查导数的运算法则.属基础题.
练习册系列答案
相关题目