题目内容
已知函数f(x)=2sinxcosx+cos2x(x∈R).
(1)当x取什么值时,函数f(x)取得最大值,并求其最大值;
(2)若θ为锐角,且f(θ+
)=
,求tanθ的值.
(1)当x取什么值时,函数f(x)取得最大值,并求其最大值;
(2)若θ为锐角,且f(θ+
| π |
| 8 |
| ||
| 3 |
(1)f(x)=2sinxcosx+cos2x=sin2x+cos2x(1分)
=
(
sin2x+
cos2x)(2分)
=
sin(2x+
).(3分)
∴当2x+
=2kπ+
,即x=kπ+
(k∈Z)时,函数f(x)取得最大值,其值为
.
(5分)
(2)解法1:∵f(θ+
)=
,∴
sin(2θ+
)=
.(6分)
∴cos2θ=
.(7分)
∵θ为锐角,即0<θ<
,∴0<2θ<π.
∴sin2θ=
=
.(8分)
∴tan2θ=
=2
.(9分)
∴
=2
.(10分)
∴
tan2θ+tanθ-
=0.
∴(
tanθ-1)(tanθ+
)=0.
∴tanθ=
或tanθ=-
(不合题意,舍去)(11分)
∴tanθ=
.(12分)
解法2:∵f(θ+
)=
,∴
sin(2θ+
)=
.
∴cos2θ=
.(7分)
∴2cos2θ-1=
.(8分)
∵θ为锐角,即0<θ<
,
∴cosθ=
.(9分)
∴sinθ=
=
.(10分)
∴tanθ=
=
.(12分)
解法3:∵f(θ+
)=
,∴
sin(2θ+
)=
.
∴cos2θ=
.(7分)
∵θ为锐角,即0<θ<
,∴0<2θ<π.
∴sin2θ=
=
.(8分)
∴tanθ=
(9分)
=
(10分)
=
=
.(12分)
=
| 2 |
| ||
| 2 |
| ||
| 2 |
=
| 2 |
| π |
| 4 |
∴当2x+
| π |
| 4 |
| π |
| 2 |
| π |
| 8 |
| 2 |
(5分)
(2)解法1:∵f(θ+
| π |
| 8 |
| ||
| 3 |
| 2 |
| π |
| 2 |
| ||
| 3 |
∴cos2θ=
| 1 |
| 3 |
∵θ为锐角,即0<θ<
| π |
| 2 |
∴sin2θ=
| 1-cos22θ |
2
| ||
| 3 |
∴tan2θ=
| sin2θ |
| cos2θ |
| 2 |
∴
| 2tanθ |
| 1-tan2θ |
| 2 |
∴
| 2 |
| 2 |
∴(
| 2 |
| 2 |
∴tanθ=
| ||
| 2 |
| 2 |
∴tanθ=
| ||
| 2 |
解法2:∵f(θ+
| π |
| 8 |
| ||
| 3 |
| 2 |
| π |
| 2 |
| ||
| 3 |
∴cos2θ=
| 1 |
| 3 |
∴2cos2θ-1=
| 1 |
| 3 |
∵θ为锐角,即0<θ<
| π |
| 2 |
∴cosθ=
| ||
| 3 |
∴sinθ=
| 1-cos2θ |
| ||
| 3 |
∴tanθ=
| sinθ |
| cosθ |
| ||
| 2 |
解法3:∵f(θ+
| π |
| 8 |
| ||
| 3 |
| 2 |
| π |
| 2 |
| ||
| 3 |
∴cos2θ=
| 1 |
| 3 |
∵θ为锐角,即0<θ<
| π |
| 2 |
∴sin2θ=
| 1-cos22θ |
2
| ||
| 3 |
∴tanθ=
| sinθ |
| cosθ |
=
| 2sinθcosθ |
| 2cos2θ |
=
| sin2θ |
| 1+cos2θ |
| ||
| 2 |
练习册系列答案
相关题目