题目内容
已知函数f(x)=sin2x,g(x)=cos(2x+
),直线x=t(t∈R)与函数f(x),g(x)的图象分别交于M,N两点,则|MN|在t∈[0,
]时的最大值为______.
| π |
| 6 |
| π |
| 2 |
设M(t,y1)N(t,y2)
|MN|=|sin2t-cos(2t+
)| =
|sin(2t-
)|
∵t∈[0,
]∴2t-
∈[-
,
]
∴-
≤sin(2t-
)≤1
0≤ MN≤
故答案为:
|MN|=|sin2t-cos(2t+
| π |
| 6 |
| 3 |
| π |
| 6 |
∵t∈[0,
| π |
| 2 |
| π |
| 6 |
| π |
| 6 |
| 5π |
| 6 |
∴-
| 1 |
| 2 |
| π |
| 6 |
0≤ MN≤
| 3 |
故答案为:
| 3 |
练习册系列答案
相关题目