题目内容
已知数列{an}满足a1=2,an+1=an-
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=nan•2n,求数列{bn}的前n项和sn.
| 1 | n(n+1) |
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=nan•2n,求数列{bn}的前n项和sn.
分析:(Ⅰ)由an+1=an-
移向得出an+1-an=-
=
-
,再利用叠加法求通项.
(Ⅱ)(Ⅱ)bn=nan•2n=(n+1)•2n,根据通项公式特点:等差数列和等比数列的乘积,利用错位相消法求和.
| 1 |
| n(n+1) |
| 1 |
| n(n+1) |
| 1 |
| n+1 |
| 1 |
| n |
(Ⅱ)(Ⅱ)bn=nan•2n=(n+1)•2n,根据通项公式特点:等差数列和等比数列的乘积,利用错位相消法求和.
解答:解:(Ⅰ)由an+1=an-
移向得an+1-an=-
=
-
当n≥2时,an=(an-an-1)+(an-1-an-2)+…+(a2-a1)+a1
=(
-
)+(
-
)+…+(
-
)+2
=
+1.
当n=1时,也适合上式,
所以数列{an}的通项公式为an=
+1.
(Ⅱ)bn=nan•2n=(n+1)•2n,
sn=2×21+3×22+…+(n+1)×2n,①
2sn=2×22+3×23+…+n×2n+(n+1)×2n+1,②
两式相减得:
-sn=2×21+22+23…+2n-(n+1)×2n+1
=4+
-(n+1)×2n+1
=2n+1-(n+1)×2n+1
=-n×2n+1.
| 1 |
| n(n+1) |
| 1 |
| n(n+1) |
| 1 |
| n+1 |
| 1 |
| n |
当n≥2时,an=(an-an-1)+(an-1-an-2)+…+(a2-a1)+a1
=(
| 1 |
| n |
| 1 |
| n-1 |
| 1 |
| n-1 |
| 1 |
| n-2 |
| 1 |
| 2 |
| 1 |
| 1 |
=
| 1 |
| n |
当n=1时,也适合上式,
所以数列{an}的通项公式为an=
| 1 |
| n |
(Ⅱ)bn=nan•2n=(n+1)•2n,
sn=2×21+3×22+…+(n+1)×2n,①
2sn=2×22+3×23+…+n×2n+(n+1)×2n+1,②
两式相减得:
-sn=2×21+22+23…+2n-(n+1)×2n+1
=4+
| 22(1-2n-1) |
| 1-2 |
=2n+1-(n+1)×2n+1
=-n×2n+1.
点评:本题考查数列通项公式求解,数列求和,考查了裂项、叠加,错位相消法在数列问题中的应用体现.
练习册系列答案
相关题目