题目内容
14.已知a1=3,(2-an)•an+1=1,求数列{an}的通项公式.分析 由(2-an)•an+1=1,可得$\frac{1}{{a}_{n+1}-1}-\frac{1}{{a}_{n}-1}$=-1,利用等差数列的通项公式即可得出.
解答 解:∵(2-an)•an+1=1,
∴$\frac{1}{{a}_{n+1}-1}-\frac{1}{{a}_{n}-1}$=$\frac{1}{\frac{1}{2-{a}_{n}}-1}$-$\frac{1}{{a}_{n}-1}$=$\frac{2-{a}_{n}}{{a}_{n}-1}$-$\frac{1}{{a}_{n}-1}$=-1,
∴数列$\{\frac{1}{{a}_{n}-1}\}$是等差数列,首项为$\frac{1}{3-1}$=$\frac{1}{2}$,公差为-1,
∴$\frac{1}{{a}_{n}-1}$=$\frac{1}{2}-(n-1)$=$\frac{3-2n}{2}$,
解得an=$\frac{2n-5}{2n-3}$.
点评 本题考查了递推式的应用、等差数列的通项公式,考查了变形能力、推理能力与计算能力,属于中档题.
练习册系列答案
相关题目
2.若函数f(x)=$\frac{1}{3}$x3-$\frac{1}{2}$ax2+(a-1)x+1在区间(1,4)上为减函数,在区间(6,+∞)上为增函数,则实数a的取值范围为( )
| A. | (-∞,0] | B. | [-1,3] | C. | [3,5] | D. | [5,7] |
6.某市教育局邀请教育专家深入该市多所中小学,开展听课、访谈及随堂检测等活动.他们把收集到的180节课分为三类课堂教学模式:教师主讲的为A模式,少数学生参与的为B模式,多数学生参与的为C模式.A、B、C三类课的节数比例为3:2:1
(Ⅰ)为便于研究分析,教育专家将A模式称为传统课堂模式,B、C统称为新课堂模式,根据随堂检测结果,把课堂教学效率分为高效和非高效,根据检测结果统计得到如下2×2列联表(单位:节)
请根据统计数据回答:有没有99%的把握认为课堂教学效率与教学模式有关?并说明理由.
(Ⅱ)教育专家采用分层抽样的方法从收集到的180节课中选出18节课作为样本进行研究,并从样本的B模式和C模式课堂中随机抽取3节课.
①求至少有一节为C模式课堂的概率;
②设随机抽取的3节课中含有C模式课堂的节数为X,求X的分布列和数学期望.
参考临界值表:
参考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n =a +b +c +d
(Ⅰ)为便于研究分析,教育专家将A模式称为传统课堂模式,B、C统称为新课堂模式,根据随堂检测结果,把课堂教学效率分为高效和非高效,根据检测结果统计得到如下2×2列联表(单位:节)
| 高效 | 非高效 | 统计 | |
| 新课堂模式 | 60 | 30 | 90 |
| 传统课堂模式 | 40 | 50 | 90 |
| 统计 | 100 | 80 | 180 |
(Ⅱ)教育专家采用分层抽样的方法从收集到的180节课中选出18节课作为样本进行研究,并从样本的B模式和C模式课堂中随机抽取3节课.
①求至少有一节为C模式课堂的概率;
②设随机抽取的3节课中含有C模式课堂的节数为X,求X的分布列和数学期望.
参考临界值表:
| P(K2≧K0) | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| K0 | 2.706 | 3.841 | 5.024 | 6.635 | 7.897 | 10.828 |
3.执行如图所示的程序框图,若输入x=30,则输出的结果为( )

| A. | 4 | B. | 3 | C. | 2 | D. | 1 |
4.已知|${\overrightarrow{OA}}$|=2,|${\overrightarrow{OB}}$|=2$\sqrt{3}$,$\overrightarrow{OA}$•$\overrightarrow{OB}$=0,点C在AB上,∠AOC=30°.则向量$\overrightarrow{OC}$等于( )

| A. | $\frac{1}{4}\overrightarrow{OA}+\frac{3}{4}\overrightarrow{OB}$ | B. | $\frac{3}{4}\overrightarrow{OA}+\frac{1}{4}\overrightarrow{OB}$ | C. | $\frac{3}{4}\overrightarrow{OA}-\frac{1}{4}\overrightarrow{OB}$ | D. | $\frac{5}{4}\overrightarrow{OA}-\frac{1}{4}\overrightarrow{OB}$ |