题目内容
| AB |
| a |
| AD |
| b |
| AP |
| c |
(1)试用
| a |
| b |
| c |
| BM |
(2)求BM的长.
分析:(1)根据向量加法法则,得
=
(
+
),再根据正方形ABCD中
=
,结合
=
-
代入化简即得用
,
,
表示向量
的式子;
(2)由题意得
、
、
的模长分别为1、1、2,利用数量积公式结合题中角度算出
•
=0,
•
=
•
=1,代入
2的表示式算出
2=
,从而得到BM的长等于
.
| BM |
| 1 |
| 2 |
| BC |
| BP |
| AD |
| BC |
| BP |
| AP |
| AB |
| a |
| b |
| c |
| BM |
(2)由题意得
| a |
| b |
| c |
| a |
| b |
| a |
| c |
| b |
| c |
| BM |
| BM |
| 3 |
| 2 |
| ||
| 2 |
解答:解:(1)∵M是PC的中点,∴
=
(
+
)
∵
=
,
=
-
,∴
=
[
+(
-
)]
结合
=
,
=
,
=
,得
═
[b+(c-a)]=-
a+
b+
c
(2)∵AB=AD=1,PA=2,∴
=
=1,
=2
∵AB⊥AD,∠PAB=∠PAD=60°
∴
•
=0,
•
=
•
=2×1×cos60°=1
∵
=-
a+
b+
c
∴
2=
(-
a+
b+
c)2=
(
2+
2+
2-2
•
-2
•
+2
•
)
=
(1+1+4+0-2+2)=
∴
=
=
,即BM的长等于
.
| BM |
| 1 |
| 2 |
| BC |
| BP |
∵
| AD |
| BC |
| BP |
| AP |
| AB |
| BM |
| 1 |
| 2 |
| AD |
| AP |
| AB |
结合
| AB |
| a |
| AD |
| b |
| AP |
| c |
| BM |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
(2)∵AB=AD=1,PA=2,∴
| |a| |
| |b| |
| |c| |
∵AB⊥AD,∠PAB=∠PAD=60°
∴
| a |
| b |
| a |
| c |
| b |
| c |
∵
| BM |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
∴
| BM |
| 1 |
| 4 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 4 |
| a |
| b |
| c |
| a |
| b |
| a |
| c |
| b |
| c |
=
| 1 |
| 4 |
| 3 |
| 2 |
∴
| |BM| |
|
| ||
| 2 |
| ||
| 2 |
点评:本题在四棱锥中用
、
、
表示出向量
,并根据给出的数据求BM的长度.着重考查了向量的线性运算法则、向量的数量积及其运算性质等知识,属于中档题.
| a |
| b |
| c |
| BM |
练习册系列答案
相关题目