题目内容

如图,在四棱锥P-ABCD中,底面ABCD是边长为1的正方形,侧棱PA的长为2,且PA与AB、AD的夹角都等于60°,M是PC的中点,设
AB
=
a
AD
=
b
AP
=
c

(1)试用
a
b
c
表示出向量
BM

(2)求BM的长.
分析:(1)根据向量加法法则,得
BM
=
1
2
(
BC
+
BP
)
,再根据正方形ABCD中
AD
=
BC
,结合
BP
=
AP
-
AB
代入化简即得用
a
b
c
表示向量
BM
的式子;
(2)由题意得
a
b
c
的模长分别为1、1、2,利用数量积公式结合题中角度算出
a
b
=0
a
c
=
b
c
=1
,代入
BM
2
的表示式算出
BM
2
=
3
2
,从而得到BM的长等于
6
2
解答:解:(1)∵M是PC的中点,∴
BM
=
1
2
(
BC
+
BP
)

AD
=
BC
BP
=
AP
-
AB
,∴
BM
=
1
2
[
AD
+(
AP
-
AB
)]

结合
AB
=
a
AD
=
b
AP
=
c
,得
BM
1
2
[b+(c-a)]=-
1
2
a+
1
2
b+
1
2
c

(2)∵AB=AD=1,PA=2,∴
|a|
=
|b|
=1
|c|
=2

∵AB⊥AD,∠PAB=∠PAD=60°
a
b
=0
a
c
=
b
c
=2×1×cos60°=1

BM
=-
1
2
a+
1
2
b+
1
2
c

BM
2
=
1
4
(-
1
2
a+
1
2
b+
1
2
c)2
=
1
4
(
a
2
+
b
2
+
c
2
-2
a
b
-2
a
c
+2
b
c
)

=
1
4
(1+1+4+0-2+2)=
3
2

|BM|
=
BM
2
=
6
2
,即BM的长等于
6
2
点评:本题在四棱锥中用
a
b
c
表示出向量
BM
,并根据给出的数据求BM的长度.着重考查了向量的线性运算法则、向量的数量积及其运算性质等知识,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网