题目内容

17.已知数列{an}的前n项和为Sn,${S_n}={n^2}-7n\;(n∈N*)$.
(1)求数列{an}通项公式,并证明{an}为等差数列.
(2)求当n为多大时,Sn取得最小值.

分析 (1)由${a}_{n}=\left\{\begin{array}{l}{{S}_{1},n=1}\\{{S}_{n}-{S}_{n-1},n≥0}\end{array}\right.$,由${S_n}={n^2}-7n\;(n∈N*)$,能求出数列{an}通项公式,并能证明{an}为等差数列.
(2)由当${a_n}=2n-8\;≤0(n∈{N^*})$时,解得n≤4,能求出Sn取得最小值是n的值.

解答 解:(1)∵数列{an}的前n项和为Sn,${S_n}={n^2}-7n\;(n∈N*)$,
∴当n≥2时,${a_n}={S_n}-{S_{n-1}}=({n^2}-7n)-[{(n-1)^2}-7(n-1)]$=2n-8,
当n=1时,S1=a1=-6,满足上式,
∴${a_n}=2n-8\;(n∈{N^*})$,
又∵${a_n}-{a_{n-1}}=(2n-8)-[2(n-1)-8]=2\;(n≥2,n∈{N^*})$,
∴{an}为等差数列.
(2)∵当${a_n}=2n-8\;≤0(n∈{N^*})$时,解得n≤4,
a4=2×4-8=0,
∴当n=3或n=4,时Sn取得最小值.

点评 本题考查数列的通项公式和等差数列的证明,考查Sn取得最小值时项数n的求法,是基础题,解题时要认真审题,注意等差数列的性质的合理运用.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网