题目内容
17.已知数列{an}的前n项和为Sn,${S_n}={n^2}-7n\;(n∈N*)$.(1)求数列{an}通项公式,并证明{an}为等差数列.
(2)求当n为多大时,Sn取得最小值.
分析 (1)由${a}_{n}=\left\{\begin{array}{l}{{S}_{1},n=1}\\{{S}_{n}-{S}_{n-1},n≥0}\end{array}\right.$,由${S_n}={n^2}-7n\;(n∈N*)$,能求出数列{an}通项公式,并能证明{an}为等差数列.
(2)由当${a_n}=2n-8\;≤0(n∈{N^*})$时,解得n≤4,能求出Sn取得最小值是n的值.
解答 解:(1)∵数列{an}的前n项和为Sn,${S_n}={n^2}-7n\;(n∈N*)$,
∴当n≥2时,${a_n}={S_n}-{S_{n-1}}=({n^2}-7n)-[{(n-1)^2}-7(n-1)]$=2n-8,
当n=1时,S1=a1=-6,满足上式,
∴${a_n}=2n-8\;(n∈{N^*})$,
又∵${a_n}-{a_{n-1}}=(2n-8)-[2(n-1)-8]=2\;(n≥2,n∈{N^*})$,
∴{an}为等差数列.
(2)∵当${a_n}=2n-8\;≤0(n∈{N^*})$时,解得n≤4,
a4=2×4-8=0,
∴当n=3或n=4,时Sn取得最小值.
点评 本题考查数列的通项公式和等差数列的证明,考查Sn取得最小值时项数n的求法,是基础题,解题时要认真审题,注意等差数列的性质的合理运用.
练习册系列答案
相关题目
9.下列各进制数中,最小的是( )
| A. | 85(9) | B. | 210(6) | C. | 1000(4) | D. | 111 111(2) |
6.若集合 M={1,2,4},N={1,4,6},则M∩N等于( )
| A. | {1,4} | B. | {1,4,6} | C. | {2,4,6} | D. | {1,2,4,6} |
7.《数书九章》三斜求积术:“以小斜幂,并大斜幂,减中斜幂,余半之,自乘于上;以小斜幂乘大斜幂,减上,余四约之,为实;一为从隅,开平方得积”.秦九韶把三角形的三条边分别称为小斜,中斜和大斜,“术”即方法.以S,a,b,c分别表示三角形的面积,大斜,中斜,小斜,ha,hb,hc分别为对应的大斜,中斜,小斜上的高,所以S=$\sqrt{\frac{1}{4}[{a}^{2}×{b}^{2}-(\frac{{a}^{2}+{b}^{2}-{c}^{2}}{2})^{2}]}$=$\frac{1}{2}$aha=$\frac{1}{2}$bhb=$\frac{1}{2}$chc.已知ha=3,hb=4,hc=6,根据上述公式,可以推理其对应边分别为( )
| A. | $\frac{32\sqrt{15}}{15}$,$\frac{8\sqrt{15}}{5}$,$\frac{16\sqrt{15}}{15}$ | B. | $\frac{32}{15}$,$\frac{8}{5}$,$\frac{16}{15}$ | ||
| C. | 4,3,2 | D. | 8,6,4 |