题目内容
数列{an }满足 a1=
, an+1=
.
(1)求数列{an}通项公式
(2)若 bn=
-1,{bn}的前n次和为Bn,若存在整数m,对任意n∈N+且n≥2都有 B3n-Bn>
成立,求m的最大值.
| 1 |
| 2 |
| 1 |
| 2-an |
(1)求数列{an}通项公式
(2)若 bn=
| 1 |
| an |
| m |
| 20 |
分析:(1)利用数列递推式,可得{
}是首项为-2,公差为-1的等差数列,利用等差数列的求和公式,即可求得数列的通项;
(2)确定数列{bn}的通项,令Cn=B3n-Bn,确定其单调递增,求出最小值,从而可求m的最大值.
| 1 |
| an-1 |
(2)确定数列{bn}的通项,令Cn=B3n-Bn,确定其单调递增,求出最小值,从而可求m的最大值.
解答:解:(1)∵ an+1=
,
∴
=
=-1+
∴
-
=-1
∵a1=
,∴
=-2
∴{
}是首项为-2,公差为-1的等差数列
∴
=-2+(n-1)×(-1)=-(n+1)
∴an=
;
(2)∵an=
,∴ bn=
-1=
令Cn=B3n-Bn=
+
+…+
∴Cn+1-Cn=[
+
+…+
]-(
+
+…+
)=-
+
+
+
=
-
+
>
-
=0
∴Cn+1-Cn>0,∴{Cn}为单调递增数列
∴(Cn)min=C2=B6-B2=
+
+
+
=
∴
<
,∴m<19
又m∈N+,
∴m的最大值为18.
| 1 |
| 2-an |
∴
| 1 |
| an+1-1 |
| 1 | ||
|
| 1 |
| an-1 |
∴
| 1 |
| an+1-1 |
| 1 |
| an-1 |
∵a1=
| 1 |
| 2 |
| 1 |
| a1-1 |
∴{
| 1 |
| an-1 |
∴
| 1 |
| an-1 |
∴an=
| n |
| n+1 |
(2)∵an=
| n |
| n+1 |
| 1 |
| an |
| 1 |
| n |
令Cn=B3n-Bn=
| 1 |
| n+1 |
| 1 |
| n+2 |
| 1 |
| 3n |
∴Cn+1-Cn=[
| 1 |
| n+2 |
| 1 |
| n+3 |
| 1 |
| 3(n+1) |
| 1 |
| n+1 |
| 1 |
| n+2 |
| 1 |
| 3n |
| 1 |
| n+1 |
| 1 |
| 3n+2 |
| 1 |
| 3n+3 |
| 1 |
| 3n+1 |
=
| 1 |
| 3n+2 |
| 2 |
| 3n+3 |
| 1 |
| 3n+1 |
| 2 |
| 3n+3 |
| 2 |
| 3n+3 |
∴Cn+1-Cn>0,∴{Cn}为单调递增数列
∴(Cn)min=C2=B6-B2=
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| 5 |
| 1 |
| 6 |
| 19 |
| 20 |
∴
| m |
| 20 |
| 19 |
| 20 |
又m∈N+,
∴m的最大值为18.
点评:本题考查数列递推式,考查数列的通项,考查数列的单调性,考查恒成立问题,确定数列的通项是关键.
练习册系列答案
相关题目