题目内容

设离散型随机变量ξ可能取的值为1,2,3,4.P(ξ=k)=ak+b(k=1,2,3,4),又ξ的数学期望Eξ=3,则a+b=______.
设离散性随机变量ξ可能取的值为1,2,3,4,
P(ξ=k)=ak+b(k=1,2,3,4),
∴(a+b)+(2a+b)+(3a+b)+(4a+b)=1,
即10a+4b=1,
又ξ的数学期望Eξ=3,
则(a+b)+2(2a+b)+3(3a+b)+4(4a+b)=3,
即30a+10b=3,
a=
1
10
,b=0

∴a+b=
1
10
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网