题目内容

设数列{an}的通项是关于x的不等式x2-x<(2n-1)x (n∈N*)的解集中整数的个数.数列{an}的前n项和为Sn
(Ⅰ)求an
(Ⅱ)设m,k,p∈N*,m+p=2k,求证:数学公式+数学公式数学公式
(Ⅲ)对于(Ⅱ)中的命题,对一般的各项均为正数的等差数列还成立吗?如果成立,请证明你的结论,如果不成立,请说明理由.

解:(1)不等式x2-x<(2n-1)x 即x(x-2n)<0,解得:0<x<2n,其中整数有2n-1个,
故 an=2n-1.
(2)由(1)知,∴Sm=m2,Sp=p2,Sk=k2
==
=0,

(3)结论成立,证明如下:
设等差数列{an}的首项为a1,公差为d,则
=
把m+p=2k代入上式化简得Sm+Sp-2Sk=≥0,…16分.
∴Sm+Sp≥2Sk
又 Sm•Sp ==
==
==,故 + 成立.
分析:(1)由题意知数列{an}的通项是关于x的不等式的解集中整数的个数,题目首先应该解不等式,从不等式的解集中得到整数的个数,得到数列的通项,用等差数列的定义来验证.
(2)根据前面结果写出要用的前几项的和,从不等式的一侧入手,利用均值不等式得到要求的结论.
(3)本题是对上一问的延伸,方法和前面的类似,但题目所给的一般的各项均为正数的等差数列在整理时增加了难度,题目绝大部分工作是算式的整理,注意不能出错.
点评:本题没有具体的数字运算但运算量非常大,它考查的是等差数列和等比数列的性质,基本不等式,实际上这类问题比具体的数字运算要困难,是几个知识点结合起来的综合问题,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网