题目内容

曲线y=-x3+3x2在点(1,2)处的切线方程为


  1. A.
    y=3x-1
  2. B.
    y=-3x+5
  3. C.
    y=3x+5
  4. D.
    y=2x
A
分析:根据导数的几何意义求出函数f(x)在x=1处的导数,从而求出切线的斜率,再用点斜式写出切线方程,化成斜截式即可.
解答:∵y=-x3+3x2∴y'=-3x2+6x,
∴y'|x=1=(-3x2+6x)|x=1=3,
∴曲线y=-x3+3x2在点(1,2)处的切线方程为y-2=3(x-1),
即y=3x-1,
故选A.
点评:本题主要考查了利用导数研究曲线上某点切线方程,属于基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网