题目内容
等差数列{an},{bn}前n项和分别为An,Bn,若
=
(n∈N+)且B2=20,则an=______.
| An |
| Bn |
| n |
| 2n+1 |
∵
=
,∴
=
,∴b1=3a1,
=
,∴a1+a2=8 ①,
=
,a1+a3=
(b1+b3 )=
•2b2=
( 20-3a1 ),
∴25a1+7a3=120 ②,由①②可得 a1=2,公差d=4,∴an =4n-2,
故答案为:4n-2.
| An |
| Bn |
| n |
| 2n+1 |
| a1 |
| b1 |
| 1 |
| 3 |
| a1+ a2 |
| 20 |
| 2 |
| 5 |
| a1+a3 |
| b1+b3 |
| 3 |
| 7 |
| 3 |
| 7 |
| 3 |
| 7 |
| 6 |
| 7 |
∴25a1+7a3=120 ②,由①②可得 a1=2,公差d=4,∴an =4n-2,
故答案为:4n-2.
练习册系列答案
相关题目