题目内容
(本小题满分12分)
如图,函数f1(x)=A sin(wx+j)(A>0,w>0,|j|<
)的一段图象,过点(0,1).(1)求函数f1(x)的解析式;(2)将函数y=f1(x)的图象按向量
=
平移,得到函数y=f2(x),求y=f1(x)+f2(x)的最大值,并求此时自变量x的集合.
如图,函数f1(x)=A sin(wx+j)(A>0,w>0,|j|<
(1)2sin(2x+
) (2)

(1)由图知:T=
-(-
)=
,
于是w=
=2.……………2分
设f1(x)=A sin(2x+j),
将函数f(x)=A sin2x的图象向左平移
,
得f1(x)=A sin(2x+j)的图象,······················································· 3分
则j=2×
=
,
f1(x)=A sin(2x+
).······································ 4分
将(0,1)代入f1(x)=A sin(2x+
),易得A=2.····························· 6分
故f1(x)=2sin(2x+
);·································································· 7分
(2)依题意:f2(x)=2sin
=-2cos
,······················ 8分
∴y=2sin
-2cos
=2
sin
.····························· 11分
当2x-
=2
+
,即x=
+
,k∈
时,ymax=2
.
此时,x的取值集合为
.………… 12分
于是w=
设f1(x)=A sin(2x+j),
将函数f(x)=A sin2x的图象向左平移
得f1(x)=A sin(2x+j)的图象,······················································· 3分
则j=2×
将(0,1)代入f1(x)=A sin(2x+
故f1(x)=2sin(2x+
(2)依题意:f2(x)=2sin
∴y=2sin
当2x-
此时,x的取值集合为
练习册系列答案
相关题目