题目内容
已知函数f(x)=
,g(x)=
,分别计算f(4)-5f(2)g(2)和f(9)-5f(3)g(3)的值,并概括出涉及函数f(x)和g(x)的对所有不等于零的实数x都成立的一个等式:______.
x
| ||||
| 5 |
x
| ||||
| 5 |
由已知中函数f(x)=
,g(x)=
,
∴f(4)-5f(2)g(2)
=f(22)-5f(2)g(2)
=
-5•
•
=
-
=0
f(9)-5f(3)g(3)
=f(32)-5f(3)g(3)
=
-5•
•
=
-
=0
由此可推断f(x2)-5f(x)g(x)=0
故答案为:f(x2)-5f(x)g(x)=0
x
| ||||
| 5 |
x
| ||||
| 5 |
∴f(4)-5f(2)g(2)
=f(22)-5f(2)g(2)
=
2
| ||||
| 5 |
2
| ||||
| 5 |
2
| ||||
| 5 |
=
2
| ||||
| 5 |
2
| ||||
| 5 |
=0
f(9)-5f(3)g(3)
=f(32)-5f(3)g(3)
=
3
| ||||
| 5 |
3
| ||||
| 5 |
3
| ||||
| 5 |
=
3
| ||||
| 5 |
3
| ||||
| 5 |
=0
由此可推断f(x2)-5f(x)g(x)=0
故答案为:f(x2)-5f(x)g(x)=0
练习册系列答案
相关题目