题目内容
(2013•昌平区二模)在区间[0,π]上随机取一个数x,则事件“tanx•cosx≥
”发生的概率为( )
| 1 |
| 2 |
分析:先化简不等式,确定满足tanx•cosx≥
且在区间[0,π]内x的范围,根据几何概型利用长度之比可得结论.
| 1 |
| 2 |
解答:解:∵tanx•cosx≥
,即sinx≥
且cosx≠0,
∵x∈[0,π],∴x∈[
,
)∪(
,
]
∴在区间[0,π]内,满足tanx•cosx≥
发生的概率为P=
=
.
故选C.
| 1 |
| 2 |
| 1 |
| 2 |
∵x∈[0,π],∴x∈[
| π |
| 6 |
| π |
| 2 |
| π |
| 2 |
| 5π |
| 6 |
∴在区间[0,π]内,满足tanx•cosx≥
| 1 |
| 2 |
| ||||
| π-0 |
| 2 |
| 3 |
故选C.
点评:本题考查几何概型,考查三角函数的化简,考查学生的计算能力,属于中档题.
练习册系列答案
相关题目