题目内容

已知函数f(x)=ax+bsinx,当

(1)求ab的值;

(2)设直线l:y=g(x),曲线S:y=F(x).若直线l与曲线S同时满足下列两个条件:①直线l与曲线S相切且至少有两个切点;②对任意xR都有g(x)≥F(x).则称直线l为曲线S的“上夹线”.

试证明:直线l:y=x+2是曲线S:y=ax+bsinx的“上夹线”.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网