ÌâÄ¿ÄÚÈÝ
ÒÑÖªº¯Êýf£¨x£©=1+ln
£¨0£¼x£¼2£©£®
£¨1£©ÊÇ·ñ´æÔÚµãM£¨a£¬b£©£¬Ê¹µÃº¯Êýy=f£¨x£©µÄͼÏóÉÏÈÎÒâÒ»µãP¹ØÓÚµãM¶Ô³ÆµÄµãQÒ²ÔÚº¯Êýy=f£¨x£©µÄͼÏóÉÏ£¿Èô´æÔÚ£¬Çó³öµãMµÄ×ø±ê£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£»
£¨2£©¶¨ÒåSn=
f(
)=f(
)+f(
)+¡+f(
)£¬ÆäÖÐn¡ÊN*£¬ÇóS2013£»
£¨3£©ÔÚ£¨2£©µÄÌõ¼þÏ£¬ÁîSn+1=2an£¬Èô²»µÈʽ2an•(an)m£¾1¶Ô?n¡ÊN*ÇÒn¡Ý2ºã³ÉÁ¢£¬ÇóʵÊýmµÄȡֵ·¶Î§£®
| x |
| 2-x |
£¨1£©ÊÇ·ñ´æÔÚµãM£¨a£¬b£©£¬Ê¹µÃº¯Êýy=f£¨x£©µÄͼÏóÉÏÈÎÒâÒ»µãP¹ØÓÚµãM¶Ô³ÆµÄµãQÒ²ÔÚº¯Êýy=f£¨x£©µÄͼÏóÉÏ£¿Èô´æÔÚ£¬Çó³öµãMµÄ×ø±ê£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£»
£¨2£©¶¨ÒåSn=
| 2n-1 |
| i=1 |
| i |
| n |
| 1 |
| n |
| 2 |
| n |
| 2n-1 |
| n |
£¨3£©ÔÚ£¨2£©µÄÌõ¼þÏ£¬ÁîSn+1=2an£¬Èô²»µÈʽ2an•(an)m£¾1¶Ô?n¡ÊN*ÇÒn¡Ý2ºã³ÉÁ¢£¬ÇóʵÊýmµÄȡֵ·¶Î§£®
·ÖÎö£º£¨1£©¸ù¾Ýº¯ÊýͼÏó¹ØÓÚµã¶Ô³ÆµÄ¹«Ê½£¬Éè´æÔÚÂú×ãÌõ¼þµÄµãM£¨a£¬b£©£¬Ôòf£¨x£©+f£¨2a-x£©=2b£¬´úÈë½âÎöʽ»¯¼òÕûÀí£¬¼´¿É½â³öa=b=1£»
£¨2£©ÓÉ£¨1£©µÃf£¨x£©+f£¨2-x£©=2£¬½«x=
£¨i=1£¬2£¬¡£¬2n-1£©´úÈ뺯Êýʽ£¬²¢²ÉÓõ¹ÐòÏà¼ÓµÄ·½·¨Ëã³ö2Sn=2£¨2n-1£©£¬»¯¼òµÃSn=2n-1£¬´Ó¶øËã³öS2013=2¡Á2013-1=4025£®
£¨3£©ÓÉ£¨2£©ÖÐSn=2n-1£¬½áºÏÌâÒâËã³öan=n£®Ô²»µÈʽµÈ¼ÛÓÚ2n •nm£¾1£¬Á½±ßÈ¡ÒÔeΪµ×µÄ¶ÔÊý£¬ÕûÀíµÃ
£¾-
ºã³ÉÁ¢£¬¿ÉµÃ(
)min£¾-
£®È»ºóÉèg£¨x£©=
£¨x£¾0£©£¬ÀûÓõ¼ÊýÑо¿³öº¯Êýg£¨x£©ÔÚ£¨0£¬e£©ÉÏΪ¼õº¯Êý£¬ÔÚ£¨e£¬+¡Þ£©ÉÏΪÔöº¯Êý£®½áºÏg£¨2£©£¾g£¨3£©µÃµ½g£¨x£©µÄ×îСֵΪg£¨3£©=
£¬Óɴ˿ɵÃ
£¾-
£¬½âÖ®¼´¿ÉµÃµ½ÊµÊýmµÄȡֵ·¶Î§£®
£¨2£©ÓÉ£¨1£©µÃf£¨x£©+f£¨2-x£©=2£¬½«x=
| i |
| n |
£¨3£©ÓÉ£¨2£©ÖÐSn=2n-1£¬½áºÏÌâÒâËã³öan=n£®Ô²»µÈʽµÈ¼ÛÓÚ2n •nm£¾1£¬Á½±ßÈ¡ÒÔeΪµ×µÄ¶ÔÊý£¬ÕûÀíµÃ
| n |
| lnn |
| m |
| ln2 |
| n |
| lnn |
| m |
| ln2 |
| x |
| lnx |
| 3 |
| ln3 |
| 3 |
| ln3 |
| m |
| ln2 |
½â´ð£º½â£º£¨1£©¼ÙÉè´æÔÚµãM£¨a£¬b£©£¬Ê¹µÃº¯Êýy=f£¨x£©µÄͼÏóÉÏÈÎÒâÒ»µãP¹ØÓÚµãM¶Ô³ÆµÄµãQ
Ò²ÔÚº¯Êýy=f£¨x£©µÄͼÏóÉÏ£¬Ôòº¯Êýy=f£¨x£©Í¼ÏóµÄ¶Ô³ÆÖÐÐÄΪM£¨a£¬b£©£®
ÓÉf£¨x£©+f£¨2a-x£©=2b£¬µÃ1+ln
+1+ln
=2b£¬
¼´2-2b+ln
=0¶ÔÈÎÒâ0£¼x£¼2ºã³ÉÁ¢£¬ËùÒÔ
£¬½âµÃa=b=1£»
¡à´æÔÚµãM£¨1£¬1£©£¬Ê¹µÃº¯Êýy=f£¨x£©µÄͼÏóÉÏÈÎÒâÒ»µãP¹ØÓÚµãM¶Ô³ÆµÄµãQÒ²ÔÚº¯Êýy=f£¨x£©µÄͼÏóÉÏ£»£¨2£©ÓÉ£¨1£©µÃf£¨x£©+f£¨2-x£©=2£®
Áîx=
£¬Ôòf£¨
£©+f£¨2-
£©=2£¨i=1£¬2£¬¡£¬2n-1£©£®
¡ßSn=f(
)+f(
)+¡+f(
)¡¢Ù£¬
¡àSn=f(
)+f(
)+¡+f(
)+f(
)¢Ú£¬
ÓÉ¢Ù+¢ÚµÃ2Sn=2£¨2n-1£©£¬¿ÉµÃSn=2n-1£®£¨n¡ÊN*£©
ËùÒÔS2013=2¡Á2013-1=4025£®
£¨3£©ÓÉ£¨2£©µÃSn=2an-1=2n-1£¬ËùÒÔan=n£®
¡ßµ±n¡ÊN*ÇÒn¡Ý2ʱ£¬2an•(an)m£¾1µÈ¼ÛÓÚ2n •nm£¾1£¬¼´
£¾-
£®
ËùÒÔµ±n¡ÊN*ÇÒn¡Ý2ʱ£¬²»µÈʽ
£¾-
ºã³ÉÁ¢£¬¼´(
)min£¾-
£®
Éèg£¨x£©=
£¨x£¾0£©£¬Ôòg'£¨x£©=
£®
µ±0£¼x£¼eʱ£¬g'£¨x£©£¼0ÇÒµ±x£¾eʱ£¬g'£¨x£©£¾0
¡àº¯Êýg£¨x£©ÔÚ£¨0£¬e£©ÉÏΪ¼õº¯Êý£¬ÔÚ£¨e£¬+¡Þ£©ÉÏΪÔöº¯Êý£®
ÒòΪe¡Ê£¨2£¬3£©£¬ÇÒg£¨2£©=
£¾g£¨3£©=
£¬
ËùÒÔµ±n¡ÊN*ÇÒn¡Ý2ʱ£¬g£¨x£©µÄ×îСֵΪg£¨3£©=
£¬
¼´(
)min=
£¾-
£¬½âÖ®µÃm£¾-
£®
ËùÒÔʵÊýmµÄȡֵ·¶Î§ÊÇ£¨-
£¬+¡Þ£©£®
Ò²ÔÚº¯Êýy=f£¨x£©µÄͼÏóÉÏ£¬Ôòº¯Êýy=f£¨x£©Í¼ÏóµÄ¶Ô³ÆÖÐÐÄΪM£¨a£¬b£©£®
ÓÉf£¨x£©+f£¨2a-x£©=2b£¬µÃ1+ln
| x |
| 2-x |
| 2a-x |
| 2-2a+x |
¼´2-2b+ln
| -x2+2ax |
| -x2+2ax+4-4a |
|
¡à´æÔÚµãM£¨1£¬1£©£¬Ê¹µÃº¯Êýy=f£¨x£©µÄͼÏóÉÏÈÎÒâÒ»µãP¹ØÓÚµãM¶Ô³ÆµÄµãQÒ²ÔÚº¯Êýy=f£¨x£©µÄͼÏóÉÏ£»£¨2£©ÓÉ£¨1£©µÃf£¨x£©+f£¨2-x£©=2£®
Áîx=
| i |
| n |
| i |
| n |
| i |
| n |
¡ßSn=f(
| 1 |
| n |
| 2 |
| n |
| 2n-1 |
| n |
¡àSn=f(
| 2n-1 |
| n |
| 2n-2 |
| n |
| 2 |
| n |
| 1 |
| n |
ÓÉ¢Ù+¢ÚµÃ2Sn=2£¨2n-1£©£¬¿ÉµÃSn=2n-1£®£¨n¡ÊN*£©
ËùÒÔS2013=2¡Á2013-1=4025£®
£¨3£©ÓÉ£¨2£©µÃSn=2an-1=2n-1£¬ËùÒÔan=n£®
¡ßµ±n¡ÊN*ÇÒn¡Ý2ʱ£¬2an•(an)m£¾1µÈ¼ÛÓÚ2n •nm£¾1£¬¼´
| n |
| lnn |
| m |
| ln2 |
ËùÒÔµ±n¡ÊN*ÇÒn¡Ý2ʱ£¬²»µÈʽ
| n |
| lnn |
| m |
| ln2 |
| n |
| lnn |
| m |
| ln2 |
Éèg£¨x£©=
| x |
| lnx |
| lnx-1 |
| (lnx)2 |
µ±0£¼x£¼eʱ£¬g'£¨x£©£¼0ÇÒµ±x£¾eʱ£¬g'£¨x£©£¾0
¡àº¯Êýg£¨x£©ÔÚ£¨0£¬e£©ÉÏΪ¼õº¯Êý£¬ÔÚ£¨e£¬+¡Þ£©ÉÏΪÔöº¯Êý£®
ÒòΪe¡Ê£¨2£¬3£©£¬ÇÒg£¨2£©=
| 2 |
| ln2 |
| 3 |
| ln3 |
ËùÒÔµ±n¡ÊN*ÇÒn¡Ý2ʱ£¬g£¨x£©µÄ×îСֵΪg£¨3£©=
| 3 |
| ln3 |
¼´(
| n |
| lnn |
| 3 |
| ln3 |
| m |
| ln2 |
| 3ln2 |
| ln3 |
ËùÒÔʵÊýmµÄȡֵ·¶Î§ÊÇ£¨-
| 3ln2 |
| ln3 |
µãÆÀ£º±¾Ìâ×ÅÖØ¿¼²éÁ˵ȲîÊýÁеÄͨÏʽÓëÇóºÍ¹«Ê½¡¢º¯ÊýͼÏóµÄ¶Ô³ÆÖÐÐÄÑо¿¡¢ÀûÓõ¼ÊýÑо¿º¯ÊýµÄµ¥µ÷ÐÔÓë×îÖµºÍ²»µÈʽºã³ÉÁ¢µÄÌÖÂÛµÈ֪ʶµã£¬ÊôÓÚÄÑÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
ÒÑÖªº¯Êýf£¨x£©=
£¬g£¨x£©=1+
£¬Èôf£¨x£©£¾g£¨x£©£¬ÔòʵÊýxµÄȡֵ·¶Î§ÊÇ£¨¡¡¡¡£©
| 1 |
| |x| |
| x+|x| |
| 2 |
| A¡¢£¨-¡Þ£¬-1£©¡È£¨0£¬1£© | ||||
B¡¢(-¡Þ£¬-1)¡È(0£¬
| ||||
C¡¢(-1£¬0)¡È(
| ||||
D¡¢(-1£¬0)¡È(0£¬
|