题目内容
已知空间四边形ABCD.
(1)求证:对角线AC与BD是异面直线;
(2)若AC⊥BD,E,F,G,H分别这四条边AB,BC,CD,DA的中点,试判断四边形EFGH的形状;
(3)若AB=BC=CD=DA,作出异面直线AC与BD的公垂线段.
证明:(1)(反证法)假设AC与BD不是异面直线,则AC与BD共面,
所以A、B、C、D四点共面
这与空间四边形ABCD的定义矛盾
所以对角线AC与BD是异面直线
(2)解:∵E,F分别为AB,BC的中点,∴EF//AC,且EF=
AC.
同理HG//AC,且HG=
AC.∴EF平行且相等HG,∴EFGH是平行四边形.
又∵F,G分别为BC,CD的中点,∴FG//BD,∴∠EFG是异面直线AC与BD所成的角.
∵AC⊥BD,∴∠EFG=90o.∴EFGH是矩形.
(3)作法取BD中点E,AC中点F,连EF,则EF即为所求.
练习册系列答案
相关题目