题目内容

【题目】设n棱柱有f(n)个对角面,则(n+1)棱柱的对角面的个数f(n+1)等于( )
A.f(n)+n+1
B.f(n)+n
C.f(n)+n-1
D.f(n)+n-2

【答案】C
【解析】选C.因为过不相邻两条侧棱的截面为对角面,过每一条侧棱与它不相邻的一条侧棱都能作对角面,可作(n-3)个对角面,n条侧棱可作n(n-3)个对角面,由于这些对角面是相互之间重复计算了,所以共有n(n-3)÷2个对角面,
所以可得f(n+1)-f(n)
=(n+1)(n+1-3)÷2-n(n-3)÷2
=n-1,
故f(n+1)=f(n)+n-1.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网