题目内容
已知函数f(x)=
m(x-1)2-2x+3+lnx(m≥1).
(Ⅰ)当m=
时,求函数f(x)在区间[1,3]上的极小值;
(Ⅱ)求证:函数f(x)存在单调递减区间[a,b];
(Ⅲ)是否存在实数m,使曲线C:y=f(x)在点P(1,1)处的切线l与曲线C有且只有一个公共点?若存在,求出实数m的值,若不存在,请说明理由.
| 1 |
| 2 |
(Ⅰ)当m=
| 3 |
| 2 |
(Ⅱ)求证:函数f(x)存在单调递减区间[a,b];
(Ⅲ)是否存在实数m,使曲线C:y=f(x)在点P(1,1)处的切线l与曲线C有且只有一个公共点?若存在,求出实数m的值,若不存在,请说明理由.
分析:(I)先求出导函数,然后求出f′(x)=0,通过列表判定函数的单调性,从而确定函数的极小值;
(II)令f′(x)=0,因为△>0,所以方程存在两个不等实根,根据条件进一步可得方程有两个不等的正根,从而得到函数f(x)存在单调递减区间;
(III)先求出函数y=f(x)在点P(1,1)处的切线l的方程,若切线l与曲线C只有一个公共点,则只需方程f(x)=-x+2有且只有一个实根即可.
(II)令f′(x)=0,因为△>0,所以方程存在两个不等实根,根据条件进一步可得方程有两个不等的正根,从而得到函数f(x)存在单调递减区间;
(III)先求出函数y=f(x)在点P(1,1)处的切线l的方程,若切线l与曲线C只有一个公共点,则只需方程f(x)=-x+2有且只有一个实根即可.
解答:解:(Ⅰ)f′(x)=m(x-1)-2+
(x>0).
当m=
时,f′(x)=
,令f′(x)=0,得x1=2,x2=
.
f(x),f′(x)的变化情况如下表:
所以,当x=2时,函数f(x)取到极小值,且极小值为f(2)=ln2-
.(4分)
(Ⅱ)令f′(x)=0,得mx2-(m+2)x+1=0. (*)
因为△=(m+2)2-4m=m2+4>0,所以方程(*)存在两个不等实根,记为a,b(a<b).
因为m≥1,所以
所以a>0,b>0,即方程(*)有两个不等的正根,因此f′(x)≤0的解为[a,b].
故函数f(x)存在单调递减区间.(8分)
(Ⅲ)因为f′(1)=-1,所以曲线C:y=f(x)在点P(1,1)处的切线l为y=-x+2.
若切线l与曲线C只有一个公共点,则方程
m(x-1)2-2x+3+lnx=-x+2有且只有一个实根.
显然x=1是该方程的一个根.
令g(x)=
m(x-1)2-x+1+lnx,则g′(x)=m(x-1)-1+
=
.
当m=1时,有g′(x)≥0恒成立,所以g(x)在(0,+∞)上单调递增,所以x=1是方程的唯一解,m=1符合题意.
当m>1时,令g′(x)=0,得x1=1,x2=
,则x2∈(0,1),易得g(x)在x1处取到极小值,在x2处取到极大值.
所以g(x2)>g(x1)=0,又当x→0时,g(x)→-∞,所以函数g(x)在(0,
)内也有一个解,即当m>1时,不合题意.
综上,存在实数m,当m=1时,曲线C:y=f(x)在点P(1,1)处的切线l与C有且只有一个公共点.(14分)
| 1 |
| x |
当m=
| 3 |
| 2 |
3(x-2)(x-
| ||
| 2x |
| 1 |
| 3 |
f(x),f′(x)的变化情况如下表:
| x | (0,
|
|
(
|
2 | (2,+∞) | ||||||
| f'(x) | + | 0 | - | 0 | + | ||||||
| f(x) | 单调递增 | 极大值 | 单调递减 | 极小值 | 单调递增 |
| 1 |
| 4 |
(Ⅱ)令f′(x)=0,得mx2-(m+2)x+1=0. (*)
因为△=(m+2)2-4m=m2+4>0,所以方程(*)存在两个不等实根,记为a,b(a<b).
因为m≥1,所以
|
所以a>0,b>0,即方程(*)有两个不等的正根,因此f′(x)≤0的解为[a,b].
故函数f(x)存在单调递减区间.(8分)
(Ⅲ)因为f′(1)=-1,所以曲线C:y=f(x)在点P(1,1)处的切线l为y=-x+2.
若切线l与曲线C只有一个公共点,则方程
| 1 |
| 2 |
显然x=1是该方程的一个根.
令g(x)=
| 1 |
| 2 |
| 1 |
| x |
m(x-1)(x-
| ||
| x |
当m=1时,有g′(x)≥0恒成立,所以g(x)在(0,+∞)上单调递增,所以x=1是方程的唯一解,m=1符合题意.
当m>1时,令g′(x)=0,得x1=1,x2=
| 1 |
| m |
所以g(x2)>g(x1)=0,又当x→0时,g(x)→-∞,所以函数g(x)在(0,
| 1 |
| m |
综上,存在实数m,当m=1时,曲线C:y=f(x)在点P(1,1)处的切线l与C有且只有一个公共点.(14分)
点评:本题主要考查了利用导数研究函数的极值和单调性,以及导数的几何意义,同时考查了转化的思想,属于中档题.
练习册系列答案
相关题目
已知函数f(x)=
,g(x)=1+
,若f(x)>g(x),则实数x的取值范围是( )
| 1 |
| |x| |
| x+|x| |
| 2 |
| A、(-∞,-1)∪(0,1) | ||||
B、(-∞,-1)∪(0,
| ||||
C、(-1,0)∪(
| ||||
D、(-1,0)∪(0,
|