题目内容

已知函数f(x)的定义域为(-2,2),导函数为f′(x)=x2+2cosx且f(0)=0,则满足f(1+x)+f(x2-x)>0的实数x的取值范围为


  1. A.
    (-1,1)
  2. B.
    数学公式
  3. C.
    数学公式
  4. D.
    数学公式
A
分析:由导函数可求原函数 f(x)2判断函数f(x)单调性,为单调递增函数,奇偶性为奇函数因为 f(-x)=-f(x)3 奇偶性解不等式将-f(x^2-x)=f(x-x^2)4利用单调性去掉函数符号f 即可解得所求 注意自变量本身范围 有意义
解答:
f'(x)=x^2+2cosx
知f(x)=(1/3)x^3+2sinx+c
f(0)=0,
知,c=0
即:f(x)=(1/3)x^3+2sinx
易知,此函数是奇函数,且在整个区间单调递增,
因为f'(x)=x^2+2cosx在x∈(0,2】>0恒成立
根据奇函数的性质可得出,在其对应区间上亦是单调递增的f(1+x)+f(x^2-x)>0
f(1+x)>-f(x^2-x)
即:f(1+x)>f(x-x^2)
-2<x+1<2(保证有意义)
-2<x^2-x<2(保证有意义)
x+1>x-x^2(单调性得到的)
解得即可
故答案为A
点评:本题较难全面考查函数性质和积分知识综合性很强
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网