题目内容

1.在△ABC中,角A,B,C对应的边分别是a,b,c,已知cosC+(cosB-$\sqrt{3}$sinB)cosA=0,
(1)求角A的大小;
(2)若△ABC的面积S=5$\sqrt{3}$,b=5,求sinBsinC的值.

分析 (1)利用和差化积、诱导公式、三角函数求值即可得出.
(2)利用三角形的面积计算公式、正弦定理余弦定理即可得出.

解答 解:(1)由验证可得:$-cos({A+B})+cosBcosA-\sqrt{3}sinBcosA=0$,
化为$sinAsinB-\sqrt{3}sinBcosA=0$,又sinB≠0,
∴$sinA-\sqrt{3}cosA=0$,又cosA≠0,
∴$tanA=\sqrt{3}$,
又0<A<π,故$A=\frac{π}{3}$.
(2)∵$S=\frac{1}{2}bcsinA=\frac{{\sqrt{3}}}{4}bc=5\sqrt{3}$,得bc=20,又b=5,∴c=4.
由余弦定理得a2=b2+c2-2bccosA=21,故$a=\sqrt{21}$,
又由正弦定理得$sinCsinB=\frac{c}{a}sinA•\frac{b}{a}sinA=\frac{bc}{a^2}{sin^2}A=\frac{5}{7}$.

点评 本题考查了和差化积、诱导公式、三角函数求值、三角形的面积计算公式、正弦定理余弦定理,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网