题目内容
若数列{an}满足an=
,则数列{an}的前n项和Sn公式为
.
| 1 |
| n(n+1) |
| n |
| n+1 |
| n |
| n+1 |
分析:先变形:an=
=
-
,利用裂项相消法即可求得结果.
| 1 |
| n(n+1) |
| 1 |
| n |
| 1 |
| n+1 |
解答:解:∵an=
=
-
,
∴Sn=1-
+
-
+…+
-
=1-
=
,
故答案为:
.
| 1 |
| n(n+1) |
| 1 |
| n |
| 1 |
| n+1 |
∴Sn=1-
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| n |
| 1 |
| n+1 |
=1-
| 1 |
| n+1 |
| n |
| n+1 |
故答案为:
| n |
| n+1 |
点评:本题考查裂项相消法对数列求和,注意对通项进行合理拆项.
练习册系列答案
相关题目