题目内容

(2013•和平区二模)如图,AB、CD是圆O的两条平行弦,AF∥BD交CD于点E,交圆为O于点F,过B点的切线交CD的延长线于点P,若PD=CE=1,PB=
5
,则BD的长为
3
3
分析:根据切割线定理PB2=PD×PC,算出CD=4,得PC=5,ED=CD-CE=3.由△BPD∽△CPB得
BD
CB
=
PB
CP
=
5
5
,设BD=x得CB=
5
x.设AF、BC的交点为G,利用平等线分线段成比例结合平行四边形的性质,算出GE=
1
4
x、CG=
5
4
x、BG=
3
5
4
x且AG=
3
4
x.然后利用相交弦定理AG•GF=CG•BG,算出GF=
5
4
x,从而EF=GF-GE=x.最后根据AE•EF=CE•ED,即可算出BD的长.
解答:解:∵直线PB切圆O于点B,PDC是圆O的割线
∴PB2=PD×PC,得(
5
2=1×(1+CD),
解得CD=4,得PC=5,ED=CD-CE=3
∵∠PBD=∠PCB,∠BPD=∠CPB
∴△BPD∽△CPB,可得
BD
CB
=
PB
CP
=
5
5

设BD=x,则CB=
5
x,设AF、BC的交点为G
∵AE∥BD,得
GE
BD
=
CE
CD
=
1
4

∴GE=
1
4
BD=
1
4
x;CG=
1
4
CB=
5
4
x,BG=
3
5
4
x,
平等四边形ABDE中,AE=BD=x,得AG=AE-GE=
3
4
x
由相交弦定理,得AG•GF=CG•BG,即
3
4
x•GF=
5
4
x•
3
5
4
x
解得GF=
5
4
x,可得EF=GF-GE=
5
4
x-
1
4
x=x
又∵AE•EF=CE•ED,AE=EF=x,CE=1且ED=3
∴x2=1×3=3,解之得x=
3
,即BD的长为
3

故答案为:
3
点评:本题给出圆内的平行线和圆的切线,在已知切线PB长的情况下求线段BD的长.着重考查了圆当中的比例线段、平行线的性质、相似三角形的判定与性质等知识,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网